Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
多変量解析(数量化Ⅰ~Ⅳ類)
Search
katsutan
March 30, 2017
Technology
0
370
多変量解析(数量化Ⅰ~Ⅳ類)
長岡技術科学大学 自然言語処理研究室 B3ゼミ発表9
katsutan
March 30, 2017
Tweet
Share
More Decks by katsutan
See All by katsutan
What does BERT learn about the structure of language?
katsutan
0
220
Simple and Effective Paraphrastic Similarity from Parallel Translations
katsutan
0
200
Simple task-specific bilingual word embeddings
katsutan
0
210
Retrofitting Contextualized Word Embeddings with Paraphrases
katsutan
0
250
Character Eyes: Seeing Language through Character-Level Taggers
katsutan
1
200
Improving Word Embeddings Using Kernel PCA
katsutan
0
220
Better Word Embeddings by Disentangling Contextual n-Gram Information
katsutan
0
310
Rotational Unit of Memory: A Novel Representation Unit for RNNs with Scalable Applications
katsutan
0
260
A robust self-learning method for fully unsupervised cross-lingual mappings of word embeddings
katsutan
0
290
Other Decks in Technology
See All in Technology
「れきちず」のこれまでとこれから - 誰にでもわかりやすい歴史地図を目指して / FOSS4G 2025 Japan
hjmkth
1
300
これがLambdaレス時代のChatOpsだ!実例で学ぶAmazon Q Developerカスタムアクション活用法
iwamot
PRO
6
1k
綺麗なデータマートをつくろう_データ整備を前向きに考える会 / Let's create clean data mart
brainpadpr
3
460
ACA でMAGI システムを社内で展開しようとした話
mappie_kochi
1
320
Developer Advocate / Community Managerなるには?
tsho
0
140
AI駆動開発を推進するためにサービス開発チームで 取り組んでいること
noayaoshiro
0
260
AWS 잘하는 개발자 되기 - AWS 시작하기: 클라우드 개념부터 IAM까지
kimjaewook
0
130
AWS IoT 超入門 2025
hattori
0
330
AI時代こそ求められる設計力- AWSクラウドデザインパターン3選で信頼性と拡張性を高める-
kenichirokimura
3
300
サイバーエージェント流クラウドコスト削減施策「みんなで金塊堀太郎」
kurochan
2
650
プロダクトのコードから見るGoによるデザインパターンの実践 #go_night_talk
bengo4com
1
2.5k
Where will it converge?
ibknadedeji
0
210
Featured
See All Featured
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
12
1.2k
Context Engineering - Making Every Token Count
addyosmani
6
240
Building a Scalable Design System with Sketch
lauravandoore
463
33k
Designing for humans not robots
tammielis
254
26k
The Cost Of JavaScript in 2023
addyosmani
54
9k
Why Our Code Smells
bkeepers
PRO
339
57k
How To Stay Up To Date on Web Technology
chriscoyier
791
250k
Testing 201, or: Great Expectations
jmmastey
45
7.7k
Code Reviewing Like a Champion
maltzj
526
40k
Fireside Chat
paigeccino
40
3.7k
A designer walks into a library…
pauljervisheath
209
24k
What’s in a name? Adding method to the madness
productmarketing
PRO
23
3.7k
Transcript
多変量解析(数量化Ⅰ~Ⅳ類) 長岡技術科学大学 自然言語処理研究室 学部3年 勝田 哲弘 1 2017/3/31
データ • 4種の尺度 • 名義尺度 ▫ 数値自体に意味がない • 順序尺度 ▫
大小には意味がある 2 質的データ 名義尺度 名義的に数値化 男を1、女を2 順序尺度 順序に意味がある 好き1、それほどではな い2、嫌い3 量的データ 間隔尺度 数の間隔に意味がある 部屋の温度計 比例尺度 数値の差や比に意味がある 身長、体重、時間
数量化Ⅰ類 • 数値データを外的基準として質的データを数量 化 3 物件番号 日照 駅徒歩圏 価格 1
良 圏外 36.4 2 良 圏内 52.6 ・・・ ・・・ ・・・ ・・・ 9 悪 圏外 20.2 10 悪 圏内 36.5
数量化Ⅰ類 • カテゴリーごとに見やすくする 4 物件番号 日照 良 悪 駅徒歩圏 圏内
圏外 価格 1 1 0 0 1 36.4 2 1 0 1 0 52.6 ・・・ ・・・ ・・・ ・・・ 9 0 1 0 1 20.2 10 0 1 1 0 36.5
数量化Ⅰ類 • カテゴリーウェイト ▫ 各カテゴリーの関係を表す重み • サンプルスコア 1 1 +
2 2 + 1 1 + 2 2 5 アイテム 日照 駅徒歩圏 カテゴリー 良い 悪い 圏内 圏外 ウェイト 1 2 1 2 物件k 1 2 1 2
数量化Ⅰ類 • サンプルスコアと目的変量との誤差の平方和が 最小になるカテゴリーウェイトを決定 ▫ 最小二乗法 6 物件番 号 日照
良 悪 駅徒歩圏 圏内 圏外 サンプルスコア 価格 1 1 0 0 1 1 + 2 36.4 2 1 0 1 0 1 + 1 52.6 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ 9 0 1 0 1 2 + 2 20.2 10 0 1 1 0 2 + 1 36.5
数量化Ⅱ類 • 質的データを外的基準として質的データを数量 化 7 名前 会話 家事 所得 結婚離婚
A 1 2 1 結婚 B 2 1 1 結婚 C 1 1 2 結婚 D 1 2 2 離婚 会話 家事 所得 1:多い 1:する 1:まあ満足 2:少ない 2:しない 2:不満
数量化Ⅱ類 • サンプルスコアを計算し、カテゴリーウェイト を決定 ▫ 相関比を最大に • 相関比 2 =
: 全変動 : 群間変動 8
数量化Ⅱ類 • : 全変動 = (1 − )2+(2 − )2+
⋯ + ( − )2 z:サンプルスコア • : 群間変動 = ( − )2+ ( − )2 n:群の個体数 P,Q:結婚、離婚 9
数量化Ⅲ類 • 全てのカテゴリーが対等、目安の変量がない 10 和食 中華 洋食 エスニック 20代 1
1 30代 1 1 40代 1 1 1 50代 1 1 60代 1
数量化Ⅲ類 • 対角線上に1が集まるように並び替え • カテゴリーウェイトの大小順 11 和食1 洋食3 エスニック4 中華2
60代5 1 50代4 1 1 40代3 1 1 1 30代2 1 1 20代1 1 1
数量化Ⅲ類 • 相関係数R R = 1 − 3 − +
1 − 4 − + ⋯ + 4 − 3 − 3 1 − 2 + ⋯ + 2 4 − 2 2 1 − 2 + ⋯ + 5 − 2 • 相関係数を最大とするように数量化 12
数量化Ⅳ類 • 数量化Ⅲ類と同様に数量化の基準がない資料が 対象 • 親近度 13 5 8 4
5 7 5 7 7 8 3 6 7
数量化Ⅳ類 • 親近度の重みを付けた距離の平方和Q = 5(2 − 1 )2+8(3 − 1
)2+4(4 − 1 )2 + ⋯ +3(1 − 4 )2+6(2 − 4 )2+7(3 − 4 )2 • Qの最小化で1 , 2 , 3 , 4 を求める 14
条件付け • 数量化Ⅰ類 ▫ どれか1つのカテゴリーウェイトを0にする • 数量化Ⅱ類 ▫ サンプルスコアの分散を1にする •
数量化Ⅲ類 ▫ 平均値をそれぞれ0、分散をそれぞれ1にする • 数量化Ⅳ類 ▫ 平均値を0、変動を1にする 15