Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
商品の属性値抽出タスクにおけるエラー分析
Search
katsutan
February 16, 2017
Technology
0
140
商品の属性値抽出タスクにおけるエラー分析
文献紹介
長岡技術科学大学 自然言語処理研究室
勝田哲弘
katsutan
February 16, 2017
Tweet
Share
More Decks by katsutan
See All by katsutan
What does BERT learn about the structure of language?
katsutan
0
220
Simple and Effective Paraphrastic Similarity from Parallel Translations
katsutan
0
200
Simple task-specific bilingual word embeddings
katsutan
0
210
Retrofitting Contextualized Word Embeddings with Paraphrases
katsutan
0
250
Character Eyes: Seeing Language through Character-Level Taggers
katsutan
1
200
Improving Word Embeddings Using Kernel PCA
katsutan
0
210
Better Word Embeddings by Disentangling Contextual n-Gram Information
katsutan
0
310
Rotational Unit of Memory: A Novel Representation Unit for RNNs with Scalable Applications
katsutan
0
250
A robust self-learning method for fully unsupervised cross-lingual mappings of word embeddings
katsutan
0
290
Other Decks in Technology
See All in Technology
Function Body Macros で、SwiftUI の View に Accessibility Identifier を自動付与する/Function Body Macros: Autogenerate accessibility identifiers for SwiftUI Views
miichan
2
180
サンドボックス技術でAI利活用を促進する
koh_naga
0
200
生成AI時代のデータ基盤設計〜ペースレイヤリングで実現する高速開発と持続性〜 / Levtech Meetup_Session_2
sansan_randd
1
150
現場で効くClaude Code ─ 最新動向と企業導入
takaakikakei
1
240
【実演版】カンファレンス登壇者・スタッフにこそ知ってほしいマイクの使い方 / 大吉祥寺.pm 2025
arthur1
1
830
20250910_障害注入から効率的復旧へ_カオスエンジニアリング_生成AIで考えるAWS障害対応.pdf
sh_fk2
3
240
実践!カスタムインストラクション&スラッシュコマンド
puku0x
0
380
Aurora DSQLはサーバーレスアーキテクチャの常識を変えるのか
iwatatomoya
1
920
職種の壁を溶かして開発サイクルを高速に回す~情報透明性と職種越境から考えるAIフレンドリーな職種間連携~
daitasu
0
160
20250903_1つのAWSアカウントに複数システムがある環境におけるアクセス制御をABACで実現.pdf
yhana
3
550
MCPで変わる Amebaデザインシステム「Spindle」の開発
spindle
PRO
3
3.2k
Django's GeneratedField by example - DjangoCon US 2025
pauloxnet
0
150
Featured
See All Featured
Unsuck your backbone
ammeep
671
58k
Documentation Writing (for coders)
carmenintech
74
5k
A better future with KSS
kneath
239
17k
The Cult of Friendly URLs
andyhume
79
6.6k
Intergalactic Javascript Robots from Outer Space
tanoku
272
27k
StorybookのUI Testing Handbookを読んだ
zakiyama
31
6.1k
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
4k
GitHub's CSS Performance
jonrohan
1032
460k
Thoughts on Productivity
jonyablonski
70
4.8k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
194
16k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
656
61k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
252
21k
Transcript
文献紹介: 商品の属性値抽出タスクにおける エラー分析 新里 圭司, 関根 聡, 村上 浩司 自然言語処理
Vol.23(2016) No.1 p.37-58 長岡技術科学大学 自然言語処理研究室 学部3年 勝田哲弘 2017/2/16 図、表などは論文中から引用しています。
概要 • 属性値辞書を用いた単純な辞書マッチに基づく 属性抽出システムを構築し、人手によって属性 値がアノテーションされたコーパスに対してシ ステムを適用することで明らかとなる False-positive, False-negative 事例の分析 •
誤り事例を無くすために必要な処理・データに ついて検討
概要 • エラー分析は実際のオンラインショッピングサ イトで用いられる5つの商品カテゴリから抽出 した100商品のページに対して • 属性値辞書は商品説明文に含まれる表や箇条書 きなどの半構造化データから自動構築したもの
はじめに • 商品説明文から商品の属性-属性値を抽出 例 「フランス産のシャルドネを配した辛口ワイン」 生産地-フランス ブドウ品種-シャルドネ タイプ-辛口
目的 • 属性値辞書に基づく単純なシステムで抽出した 結果のFalse-positive, False-negative 事例の分析 から抽出タスクに内在する課題を明らかにする。 • エラー分析という観点では、100件を対象に 分析し、各事例を分類によってカテゴリ化する。
分析対象データ • 楽天から配布されている商品データから
分析対象データ • 各商品ページのタイトル、商品説明文、販売方 法別説明文に含まれる属性値 • 「フランスのブルゴーニュ産」などは「フラン ス」と「ブルゴーニュ」にするのではなく「フ ランスのブルゴーニュ産」をアノテーションす る。
分析対象データ • 「フランス・ブルゴーニュ産」のように記号を 挟んで属性値が列挙されている場合は別々にア ノテーションする。 ただし固有名詞、数値、サイズ、数値の範囲の場 合は例外とする。 • 括弧の直前、中にある表現が共に属性値と見な せる場合は別々にアノテーションする。
ブルゴーニュ(フランス)
抽出システム • 属性-属性値の抽出 以上のパターンから[ANY]にマッチした表現を [ATTR]に対応する属性として抽出する。 P4においては[ANY]は最初に出現した[ATTR]の 値とする。 [ATTR] 事前に獲得した属性を表す文字列 [ANY]
任意の文字列 [P] ◦•◎□▪・☆★【<[のいずれか [S] :/】>]のいずれか
抽出システム • 同じ意味を持つ属性の集約 「属性a,bが同一の半構造化データに出現してお らず、a,b が店舗頻度の高い同一属性値を取る場 合、a,bは同義である」 という仮説を用いて表記の揺れた属性の認識・集 約を行う。
抽出システム Tシャツの例 「55cm」は「身幅」「着丈」の どちらにもなりえる。 しかし、頻度の高い「身幅」に集約されている。
エラー分析
False-positiveの分析
False-positiveの分析
False-negativeの分析 • 異表記すら辞書に含まれないもの • 異表記は辞書に含まれるもの • 抽出の問題
False-negativeの分析 • 異表記すら辞書に含まれないもの
False-negativeの分析 • 異表記は辞書に含まれるもの
まとめ • より高い精度で属性値を抽出するには ▫ 質とカバレージの高い属性-属性値辞書 ▫ 適切でない商品カテゴリの検出 ▫ 固有表現の認識 ▫
説明文の主題の認識 ▫ 属性値を抽出する際の多義性解消 ▫ メトニミーの認識 ▫ 辞書とテキスト中の表現の柔軟なマッチング