Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
シソーラスを組み込んだ意味解析システム
Search
katsutan
April 27, 2017
Technology
0
230
シソーラスを組み込んだ意味解析システム
文献紹介
長岡技術科学大学 自然言語処理研究室
勝田哲弘
katsutan
April 27, 2017
Tweet
Share
More Decks by katsutan
See All by katsutan
What does BERT learn about the structure of language?
katsutan
0
230
Simple and Effective Paraphrastic Similarity from Parallel Translations
katsutan
0
210
Simple task-specific bilingual word embeddings
katsutan
0
210
Retrofitting Contextualized Word Embeddings with Paraphrases
katsutan
0
260
Character Eyes: Seeing Language through Character-Level Taggers
katsutan
1
200
Improving Word Embeddings Using Kernel PCA
katsutan
0
220
Better Word Embeddings by Disentangling Contextual n-Gram Information
katsutan
0
320
Rotational Unit of Memory: A Novel Representation Unit for RNNs with Scalable Applications
katsutan
0
260
A robust self-learning method for fully unsupervised cross-lingual mappings of word embeddings
katsutan
0
290
Other Decks in Technology
See All in Technology
マイクロサービスへの5年間 ぶっちゃけ何をしてどうなったか
joker1007
2
610
非CUDAの悲哀 〜Claude Code と挑んだ image to 3D “Hunyuan3D”を EVO-X2(Ryzen AI Max+395)で動作させるチャレンジ〜
hawkymisc
2
190
JEDAI認定プログラム JEDAI Order 2026 エントリーのご案内 / JEDAI Order 2026 Entry
databricksjapan
0
110
モダンデータスタック (MDS) の話とデータ分析が起こすビジネス変革
sutotakeshi
0
500
プロンプトやエージェントを自動的に作る方法
shibuiwilliam
11
9.1k
AWSセキュリティアップデートとAWSを育てる話
cmusudakeisuke
0
280
ログ管理の新たな可能性?CloudWatchの新機能をご紹介
ikumi_ono
1
770
Databricks向けJupyter Kernelでデータサイエンティストの開発環境をAI-Readyにする / Data+AI World Tour Tokyo After Party
genda
1
120
CARTAのAI CoE が挑む「事業を進化させる AI エンジニアリング」 / carta ai coe evolution business ai engineering
carta_engineering
0
1.6k
LLM-Readyなデータ基盤を高速に構築するためのアジャイルデータモデリングの実例
kashira
0
250
regrowth_tokyo_2025_securityagent
hiashisan
0
250
re:Invent2025 3つの Frontier Agents を紹介 / introducing-3-frontier-agents
tomoki10
0
150
Featured
See All Featured
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
508
140k
Bash Introduction
62gerente
615
210k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
25
1.6k
Fantastic passwords and where to find them - at NoRuKo
philnash
52
3.5k
[SF Ruby Conf 2025] Rails X
palkan
0
520
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
32
1.8k
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
4.1k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
36
6.2k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
12
970
Being A Developer After 40
akosma
91
590k
Rebuilding a faster, lazier Slack
samanthasiow
84
9.3k
Stop Working from a Prison Cell
hatefulcrawdad
273
21k
Transcript
文献紹介: シソーラスを組み込んだ意味解析シ ステム 国分 芳宏, 梅北 浩二, 松下 栄一, 末岡
隆史 自然言語処理 Vol. 17 (2010) No. 4 P 4_43-4_57 長岡技術科学大学 自然言語処理研究室 学部4年 勝田哲弘 2017/4/28 図、表などは論文中から引用しています。
概要 • 用語の異なり、構文構造の異なりに対処し、解 析精度を向上させる • 対策としては、シソーラスを用いて用語間の意 味的な距離を決定する ▫ 用語の標準化や係り受けの正規化、省略された主 語の復元、文節意図を付与する
• 0.9ポイントの向上
構文構造の決定 • シソーラスを用いて用語同士の意味的な距離の 近いところに係るという方式
構文構造の決定 <P>は並列の意味
意味的な距離の定義 • 例 ネットで -調べる -行く 意味的な距離 1 ∞
意味的な距離の定義 • 未定義のものは関係ごとの意味的な距離を加算 する 狭義語のさらに狭義語は1+1で2と定義される • 同じ言葉でも異なる意味のものは別の言葉とし て管理する
係り受けデータの整理 • シソーラスを用いて用語の標準化
係り受けデータの整理 • 係り受けの正規化 ▫ 限定用法を叙述用法に統一 例 青、い、リンゴ → リンゴ、が、青、い •
間に挟む助詞は4種類に限定
情報の付与 • 文節意図 ▫ 係り受けの語幹までで区切りそれ以降の「付属語 の並び」を管理 • 例 お酒を飲 んでください
係り受け 付属語の並び
情報の付与 このシステムでは130万 行の解析辞書を使用
情報の付与
主語の推定 • 待遇表現による推定 ▫ 謙譲語が使われている動詞は一人称 ▫ 尊敬語は二人称又は三人称 • 文節意図による推定
辞書-シソーラス
解析辞書 • 各用語に付与されている情報 • 名詞の意味
解析辞書 • 用言()内は活用語尾
解析辞書 • 動詞の性質 • 付属語の並び
実験 • Yahoo!知恵袋データ2004年4月の質問記事 (5957記事、15883文)を用いて、 cabochaとの解析精度を比較 • また、シソーラスをシステムに組み込んだ場合 とそうでない場合を比べる
結果 • 13.8ポイント上回っている • シソーラスの有無では全体の15883文に対 して0.9%向上している
結果 • 成功例 「音楽がいつまでたっても始まりません」 • 失敗例 「警察の方に話がいっているかわからない」
まとめ • シソーラスによる意味的な距離を考慮すると、 0.9%向上した • 係り受け語の規模が小さかったため対応が取れ なかった • 会話体の文章を扱うため、用語をうまくまとめ られなかった