Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Split and Rephrase: Better Evaluation and a Str...
Search
katsutan
November 12, 2018
Technology
0
170
Split and Rephrase: Better Evaluation and a Stronger Baseline
文献紹介
katsutan
November 12, 2018
Tweet
Share
More Decks by katsutan
See All by katsutan
What does BERT learn about the structure of language?
katsutan
0
220
Simple and Effective Paraphrastic Similarity from Parallel Translations
katsutan
0
200
Simple task-specific bilingual word embeddings
katsutan
0
210
Retrofitting Contextualized Word Embeddings with Paraphrases
katsutan
0
250
Character Eyes: Seeing Language through Character-Level Taggers
katsutan
1
200
Improving Word Embeddings Using Kernel PCA
katsutan
0
220
Better Word Embeddings by Disentangling Contextual n-Gram Information
katsutan
0
310
Rotational Unit of Memory: A Novel Representation Unit for RNNs with Scalable Applications
katsutan
0
260
A robust self-learning method for fully unsupervised cross-lingual mappings of word embeddings
katsutan
0
290
Other Decks in Technology
See All in Technology
東京大学「Agile-X」のFPGA AIデザインハッカソンを制したソニーのAI最適化
sony
0
180
datadog-incident-management-intro
tetsuya28
0
110
kotlin-lsp の開発開始に触発されて、Emacs で Kotlin 開発に挑戦した記録 / kotlin‑lsp as a Catalyst: My Journey to Kotlin Development in Emacs
nabeo
2
160
How Fast Is Fast Enough? [PerfNow 2025]
tammyeverts
2
210
初海外がre:Inventだった人間の感じたこと
tommy0124
1
160
GCASアップデート(202508-202510)
techniczna
0
220
Azure Well-Architected Framework入門
tomokusaba
1
150
GTC 2025 : 가속되고 있는 미래
inureyes
PRO
0
140
re:Inventに行くまでにやっておきたいこと
nagisa53
0
890
激動の時代を爆速リチーミングで乗り越えろ
sansantech
PRO
1
220
[re:Inent2025事前勉強会(有志で開催)] re:Inventで見つけた人生をちょっと変えるコツ
sh_fk2
1
1.1k
AIとの協業で実現!レガシーコードをKotlinらしく生まれ変わらせる実践ガイド
zozotech
PRO
2
240
Featured
See All Featured
A designer walks into a library…
pauljervisheath
209
24k
Gamification - CAS2011
davidbonilla
81
5.5k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
140
34k
Why You Should Never Use an ORM
jnunemaker
PRO
60
9.6k
How to Ace a Technical Interview
jacobian
280
24k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
34
2.5k
How GitHub (no longer) Works
holman
315
140k
Thoughts on Productivity
jonyablonski
71
4.9k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
32
1.7k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
54k
The Art of Programming - Codeland 2020
erikaheidi
56
14k
GraphQLとの向き合い方2022年版
quramy
49
14k
Transcript
Split and Rephrase: Better Evaluation and a Stronger Baseline Roee
Aharoni & Yoav Goldberg Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Short Papers), pages 719–724 Melbourne, Australia, July 15 - 20, 2018. 長岡技術科学大学 自然言語処理研究室 勝田 哲弘
Abstract Split and Rephrase • 複数の文が含まれている文から意味を保持したまま、分割と言い換えを行う 新たな分割データセット、モデルの提案 2
Introduction “Split-and-Rephrase” by Narayan et al. (2017) • データセット、評価方法、ベースラインの設定 •
BlEU ◦ 48.9 for the best text-to-text system. ◦ 78.7 for the best RDF-aware one. text-to-textモデルに注目 3
Introduction • より困難なデータセットの提案 ◦ 既存のデータセットには問題がある ◦ new split : Githubで公開
• より優れたモデルを構築 ◦ copy mechanismの拡張 4
Preliminary Experiments Task Definition • Complex sentence: Cが与えられたときに全ての情報を含む ように平易文を生成 ◦
Simple sentence: • 各文をRDF triplesと関連付ける 5
Preliminary Experiments Experimental Details • vanilla sequence-to-sequence models with attention
(Bahdanau et al., 2015) ◦ OPENNMT-PY toolkit (Klein et al., 2017) ◦ LSTM cell size (128, 256 and 512, respectively) 6
Results RDFを用いるベースラインより優れている Narayan et al. (2017)のモデルは 過剰に分割を行っている 7
Analysis 手動でいくつかの結果を分析 • 入力側にない • 重複 • 欠落 (97.16%)の予測文が、訓練セットにおいて そのまま出現している
8
Analysis 9
New Data-split 今のデータセットは問題を一般化するために適していない、より良 いデータセットの構築を行う RDFを使用し、以下の条件でランダムに文を分割する(5,554 sentences) • 全てのRDF relationを学習データに含める •
全てのRDF triplesは分割した1文で表現される 10
New Data-split 11
Experiments and Results 新しいデータセットによる評価 • new data split • v1.0
モデルの拡張: Copy • copy-enhanced models of varying LSTM widths ◦ (128, 256 and 512) 12
Results 13
Analysis 14
Analysis SEQ2SEQ512では学習データから文を生成する傾向が強くなる 15
Conclusions • SEQ2SEQモデルがsplit-and-rephraseを学習していなくても 高いスコアを得ていることを確認した • 新たに構築したデータセットでは不当に高くなる問題を改善 • どちらのモデルに対してもcopy-mechanismがパフォーマンス を向上させる 16