Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Split and Rephrase: Better Evaluation and a Str...
Search
katsutan
November 12, 2018
Technology
0
170
Split and Rephrase: Better Evaluation and a Stronger Baseline
文献紹介
katsutan
November 12, 2018
Tweet
Share
More Decks by katsutan
See All by katsutan
What does BERT learn about the structure of language?
katsutan
0
210
Simple and Effective Paraphrastic Similarity from Parallel Translations
katsutan
0
190
Simple task-specific bilingual word embeddings
katsutan
0
200
Retrofitting Contextualized Word Embeddings with Paraphrases
katsutan
0
240
Character Eyes: Seeing Language through Character-Level Taggers
katsutan
1
190
Improving Word Embeddings Using Kernel PCA
katsutan
0
210
Better Word Embeddings by Disentangling Contextual n-Gram Information
katsutan
0
290
Rotational Unit of Memory: A Novel Representation Unit for RNNs with Scalable Applications
katsutan
0
250
A robust self-learning method for fully unsupervised cross-lingual mappings of word embeddings
katsutan
0
280
Other Decks in Technology
See All in Technology
OpenHands🤲にContributeしてみた
kotauchisunsun
1
470
PHP開発者のためのSOLID原則再入門 #phpcon / PHP Conference Japan 2025
shogogg
4
880
【TiDB GAME DAY 2025】Shadowverse: Worlds Beyond にみる TiDB 活用術
cygames
0
1.1k
生まれ変わった AWS Security Hub (Preview) を紹介 #reInforce_osaka / reInforce New Security Hub
masahirokawahara
0
240
フィンテック養成勉強会#54
finengine
0
180
Navigation3でViewModelにデータを渡す方法
mikanichinose
0
220
AIの最新技術&テーマをつまんで紹介&フリートークするシリーズ #1 量子機械学習の入門
tkhresk
0
140
標準技術と独自システムで作る「つらくない」SaaS アカウント管理 / Effortless SaaS Account Management with Standard Technologies & Custom Systems
yuyatakeyama
3
1.3k
Liquid Glass革新とSwiftUI/UIKit進化
fumiyasac0921
0
240
Amazon S3標準/ S3 Tables/S3 Express One Zoneを使ったログ分析
shigeruoda
4
550
使いたいMCPサーバーはWeb APIをラップして自分で作る #QiitaBash
bengo4com
0
370
Fabric + Databricks 2025.6 の最新情報ピックアップ
ryomaru0825
1
150
Featured
See All Featured
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
31
1.2k
How to Think Like a Performance Engineer
csswizardry
24
1.7k
Balancing Empowerment & Direction
lara
1
380
Scaling GitHub
holman
459
140k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
107
19k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
138
34k
The Art of Programming - Codeland 2020
erikaheidi
54
13k
Optimizing for Happiness
mojombo
379
70k
Visualization
eitanlees
146
16k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
53k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
507
140k
How to Ace a Technical Interview
jacobian
277
23k
Transcript
Split and Rephrase: Better Evaluation and a Stronger Baseline Roee
Aharoni & Yoav Goldberg Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Short Papers), pages 719–724 Melbourne, Australia, July 15 - 20, 2018. 長岡技術科学大学 自然言語処理研究室 勝田 哲弘
Abstract Split and Rephrase • 複数の文が含まれている文から意味を保持したまま、分割と言い換えを行う 新たな分割データセット、モデルの提案 2
Introduction “Split-and-Rephrase” by Narayan et al. (2017) • データセット、評価方法、ベースラインの設定 •
BlEU ◦ 48.9 for the best text-to-text system. ◦ 78.7 for the best RDF-aware one. text-to-textモデルに注目 3
Introduction • より困難なデータセットの提案 ◦ 既存のデータセットには問題がある ◦ new split : Githubで公開
• より優れたモデルを構築 ◦ copy mechanismの拡張 4
Preliminary Experiments Task Definition • Complex sentence: Cが与えられたときに全ての情報を含む ように平易文を生成 ◦
Simple sentence: • 各文をRDF triplesと関連付ける 5
Preliminary Experiments Experimental Details • vanilla sequence-to-sequence models with attention
(Bahdanau et al., 2015) ◦ OPENNMT-PY toolkit (Klein et al., 2017) ◦ LSTM cell size (128, 256 and 512, respectively) 6
Results RDFを用いるベースラインより優れている Narayan et al. (2017)のモデルは 過剰に分割を行っている 7
Analysis 手動でいくつかの結果を分析 • 入力側にない • 重複 • 欠落 (97.16%)の予測文が、訓練セットにおいて そのまま出現している
8
Analysis 9
New Data-split 今のデータセットは問題を一般化するために適していない、より良 いデータセットの構築を行う RDFを使用し、以下の条件でランダムに文を分割する(5,554 sentences) • 全てのRDF relationを学習データに含める •
全てのRDF triplesは分割した1文で表現される 10
New Data-split 11
Experiments and Results 新しいデータセットによる評価 • new data split • v1.0
モデルの拡張: Copy • copy-enhanced models of varying LSTM widths ◦ (128, 256 and 512) 12
Results 13
Analysis 14
Analysis SEQ2SEQ512では学習データから文を生成する傾向が強くなる 15
Conclusions • SEQ2SEQモデルがsplit-and-rephraseを学習していなくても 高いスコアを得ていることを確認した • 新たに構築したデータセットでは不当に高くなる問題を改善 • どちらのモデルに対してもcopy-mechanismがパフォーマンス を向上させる 16