Upgrade to Pro — share decks privately, control downloads, hide ads and more …

Frenkel Excitons in Vacancy-ordered Titanium Halide Perovskites (Cs₂TiX₆)

Frenkel Excitons in Vacancy-ordered Titanium Halide Perovskites (Cs₂TiX₆)

Slides from my talk on 'Frenkel Excitons in Vacancy-ordered Titanium Halide Perovskites (Cs₂TiX₆)' at the MRS Fall 2022 conference in Boston.

Papers discussed available here (open-access):
https://pubs.acs.org/doi/full/10.1021/acs.jpclett.2c02436

Questions welcome! For other computational photovoltaics, defects and disorder talks, have a look at my YouTube channel!
https://www.youtube.com/SeanRKavanagh

If you're interested in this work, you can check out our recent review on these and other perovskite-inspired materials:
https://iopscience.iop.org/article/10.1088/1361-6528/abcf6d

For more info about me and my research articles see:
https://seankavanagh.com

Seán R. Kavanagh

January 03, 2023
Tweet

More Decks by Seán R. Kavanagh

Other Decks in Research

Transcript

  1. 2
    02/01/2023
    Seán R. Kavanagh, Christopher N. Savory,
    Shanti M. Liga, Gerasimos Konstantatos,
    Aron Walsh & David O. Scanlon
    [email protected]
    J. Phys. Chem. Lett. 2022, 13, 10965–10975
    Frenkel Excitons in Vacancy-Ordered
    Titanium Halide Perovskites (Cs2
    TiX6
    )

    View full-size slide

  2. AIMIIX
    3
    AI
    2
    MIVX
    6
    ≋ A(00/MIV)X
    3
    Cation Substitution
    Perovskite-Inspired: Vacancy-Ordered (Double) Perovskites
    1. Y.-T. Huang, S. R. Kavanagh, D. O. Scanlon, A. Walsh and R. L. Z. Hoye, Nanotechnology, (2021), 32, 132004.
    2. Z. Li‡ & S. R. Kavanagh‡ et al. J. Mater. Chem. A, (2020), 8, 21780–21788.
    3. C. J. Krajewska, S. R. Kavanagh, L. Zhang, D. J. Kubicki, K. Dey, K. Gałkowski, C. P. Grey, S. D. Stranks, A. Walsh, D. O. Scanlon and R. G. Palgrave, Chem. Sci., (2021), 12, 14686–14699.

    View full-size slide

  3. 4
    • M4+: Sn4+, Te4+, Ge4+, Ti4+, Zr4+, Hf4+
    • Isolated MX6 octahedra
    • Non-toxic
    • Fully-oxidised cations: Stability ⬆
    • Solution synthesis (nanocrystals / thin films)
    • Current best solar cell performance of η = 3.3% for
    Cs2TiI6 (best non-Sn lead-free perovskite efficiency)2
    1. Y.-T. Huang, S. R. Kavanagh, D. O. Scanlon, A. Walsh and R. L. Z. Hoye, Nanotechnology, (2021), 32, 132004.
    2. M. Chen, M.-G. Ju, A. D. Carl, Y. Zong, R. L. Grimm, J. Gu, X. C. Zeng, Y. Zhou and N. P. Padture, Joule, (2018), 2, 558–570.
    AI
    2
    MIVX
    6
    ≋ A(00/MIV)X
    3
    Perovskite-Inspired: Vacancy-Ordered (Double) Perovskites

    View full-size slide

  4. 5
    Cs2
    MX6
    – Crystal Structure

    View full-size slide

  5. 6
    Cs2
    MX6
    – Crystal Structure
    Cs2
    SnCl6
    Cs2
    SnBr6
    Cs2
    SnI6
    Cs2
    TiCl6
    Cs2
    TiBr6
    Cs2
    TiI6
    Δa (Hybrid DFT) +2.8% +3.5% +2.7% +2.6% +2.9% +2.3%
    Δa (Hybrid DFT + vdW) -0.4% +0.1% -0.9% -0.6% -0.6% -1.5%
    a
    Exp
    (Å) 10.36 10.77 11.64 10.24 10.68 11.50
    ΔE
    g
    w/vdW (eV) -0.14 -0.23 -0.31 -0.04 -0.08 -0.15
    Strong dispersion (vdW) interactions between
    ’molecular’ MX6 octahedra (also for related A4MX6)
    Improved agreement with experiment ✅
    Bandgap decrease ⬇
    Hybrid DFT = HSE06+SOC a(Cl) < a(Br) < a(I) a(Sn) > a(Ti)

    View full-size slide

  6. 7
    Cs2
    MX6
    – Electronic Structure
    • Filled (d10/s2) ➡ empty (d0/s0) cation
    subshells
    • Non-bonding (rather than anti-
    bonding) VBM, with weaker dispersion
    & heavier hole masses.
    AIMIIX
    3
    ➡ AI
    2
    MIVX
    6
    Cs2SnI6
    • Disperse Sn s – X p interactions
    • Low me (CBM) for Cs2SnX6
    Symmetry-forbidden Symmetry-allowed

    View full-size slide

  7. 8
    Cs2
    MX6
    – Electronic Structure
    Cs2
    SnI6

    View full-size slide

  8. 9
    Cs2
    MX6
    – Electronic Structure
    AIMIIX
    3
    ➡ AI
    2
    MIVX
    6
    • Filled (d10/s2) ➡ empty (d0/s0) cation
    subshells
    • Non-bonding (rather than anti-
    bonding) VBM, with weaker dispersion
    & heavier hole masses.
    • Weak Ti d – X p interactions
    • Flat Ti d CBM
    • Heavy me (CBM) for Cs2TiX6
    Cs2TiI6
    Symmetry-forbidden Symmetry-allowed

    View full-size slide

  9. 10
    Cs2
    MX6
    – Electronic Structure
    Cs2
    TiI6

    View full-size slide

  10. 11
    Cs2
    MX6
    – Electronic Structure
    Cs2SnCl6 Cs2SnBr6 Cs2SnI6 Cs2TiCl6 Cs2TiBr6 Cs2TiI6
    E
    g, Optical
    (Hybrid DFT; eV) 4.5 2.9 1.2 4.0 3.0 1.9
    E
    g, Optical
    (Experiment; eV) 4.4-4.9 2.7-3.3 1.25-1.3 2.8-3.4 1.8-2.3 1.0-1.2
    Hybrid DFT = HSE06+SOC+vdW
    • Agreement with experiment for Cs2SnX6
    • Severe overestimation of experimental bandgap by DFT for Cs2TiX6
    Eg(Cl) > Eg(Br) > Eg(I)
    Bandgap overestimation for Cs2TiX6 witnessed across the literature:
    Chen, M. et al. Joule 2, 558–570 (2018).
    Ju, M.-G. et al. ACS Energy Lett. 3, 297–304 (2018).
    Kong, D. et al. J. Mater. Chem. C 8, 1591–1597 (2020).
    Euvrard, J., Wang, X., Li, T., Yan, Y. & Mitzi, D. B. J. Mater. Chem. A 8, 4049–4054 (2020).
    Mahmood, Q. et al. Materials Science in Semiconductor Processing 137, 106180 (2022).
    Li, W., Zhu, S., Zhao, Y. & Qiu, Y. Journal of Solid State Chemistry 284, 121213 (2020).
    Cucco, B. et al. Appl. Phys. Lett. 119, 181903 (2021).

    View full-size slide

  11. 12
    Cs2
    TiX6
    – Electronic Structure (Reminder)
    Cs2
    TiI6

    View full-size slide

  12. Cs2
    TiX6
    – Electronic Structure
    GW ➡ Worse bandgap overestimation (as found by Cucco at al.1)
    GW+BSE ➡ Excellent agreement!
    1. Cucco, B. et al. Appl. Phys. Lett. 119, 181903 (2021).

    View full-size slide

  13. 14
    Cs2
    TiX6
    – Electronic Structure
    GW ➡ Worse bandgap overestimation (as found by Cucco at al.1)
    GW+BSE ➡ Excellent agreement!
    1. Cucco, B. et al. Appl. Phys. Lett. 119, 181903 (2021).

    View full-size slide

  14. 15
    Cs2
    MX6
    – Electronic Structure

    View full-size slide

  15. Cs2
    MX6
    – Electronic Structure

    View full-size slide

  16. 17
    Cs2
    MX6
    – Electronic Structure
    Cs2
    TiI6
    Cs2
    SnI6
    Kavanagh et al. J. Phys. Chem. Lett. 2022, 13, 10965–10975

    View full-size slide

  17. Cs2
    MX6
    – Remaining Questions
    1. B. Cunningham, M. Gruening, D. Pashov and M. van Schilfgaarde, arXiv:2106.05759 [cond-mat], (2021).
    2. S. Acharya, D. Pashov, A. N. Rudenko, M. Rösner, M. van Schilfgaarde and M. I. Katsnelson, npj Comput. Mater., (2021), 7, 208.
    Suspiciously large GW quasiparticle bandgaps, and
    thus exciton binding…
    Underscreening of electron interactions in GW1,2 could
    result from localized orbitals and large vacant space
    Checked:
    • Functional choice (PBE+GW vs HSE+GW)
    • Pseudopotential choice
    • GW & BSE convergence (empty bands, frequency
    gridpoints…)
    Dielectric Screening:
    Kavanagh et al. J. Phys. Chem. Lett. 2022, 13, 10965–10975

    View full-size slide

  18. Cs2
    MX6
    – Remaining Questions
    1. B. Cunningham, M. Gruening, D. Pashov and M. van Schilfgaarde, arXiv:2106.05759 [cond-mat], (2021).
    2. S. Acharya, D. Pashov, A. N. Rudenko, M. Rösner, M. van Schilfgaarde and M. I. Katsnelson, npj Comput. Mater., (2021), 7, 208.
    Suspiciously large GW quasiparticle bandgaps, and
    thus exciton binding…
    Underscreening of electron interactions in GW1,2 could
    result from localized orbitals and large vacant space
    Checked:
    • Functional choice (PBE+GW vs HSE+GW)
    • Pseudopotential choice
    • GW & BSE convergence (empty bands, frequency
    gridpoints…)
    Kavanagh et al. J. Phys. Chem. Lett. 2022, 13, 10965–10975
    Similar results reported:
    Cucco, Katan, Even, Kepenekian, Volonakis
    arXiv:2210.14081 (Accepted ACS Mater Lett)
    Zhang, Gao, Cruz, Sun, Zhang, Zhao
    arXiv:2211.05323
    Bhumla, Jain, Sheoran, Bhattacharya
    arXiv:2209.08559

    View full-size slide

  19. Cs2
    MX6
    – Remaining Questions
    Cs
    2
    TiI
    6
    Cs
    2
    SnI
    6
    Cs
    2
    TiI
    6
    Cs
    2
    TiBr
    6
    Cs
    2
    TiI
    6
    Cs
    2
    TiBr
    6
    Cs
    2
    TiCl
    6
    Cs
    2
    TiI
    6
    Cs
    2
    TiBr
    6
    Cs
    2
    TiCl
    6
    Y. K. Jung, S. Kim, Y-C. Kim, A. Walsh J. Phys. Chem. Lett. 2021 12 (34), 8447–8452

    View full-size slide

  20. Cs
    2
    SnI
    6
    Cs
    2
    SnBr
    6
    Cs
    2
    SnCl
    6
    Cs
    2
    SnI
    6
    Cs
    2
    SnBr
    6
    Cs
    2
    SnI
    6
    Cs
    2
    SnBr
    6
    Cs
    2
    SnCl
    6
    Cs
    2
    TiI
    6
    Cs
    2
    SnI
    6
    Kavanagh et al. J. Phys. Chem. Lett. 2022, 13, 10965–10975
    Cs2
    MX6
    – Remaining Questions

    View full-size slide

  21. Conclusions
    Highly localised, isolated MX6 octahedra yield ‘molecular salt’ behaviour
    Substitution of Sn4+ -> Ti4+ gives qualitatively different optical behaviour
    • Severe DFT overestimation of Cs2TiX6 bandgaps; qualitatively incorrect
    Kavanagh et al. J. Phys. Chem. Lett. 2022, 13, 10965–10975
    Strong excitonic binding in Cs2
    MX6
    (M = d0 cation), resolving
    longstanding discrepancies between theory and experiment.
    Are the ultra-strong predicted Eex (GW+BSE)
    true consequences of the
    localised octahedra, or residual GW errors?

    View full-size slide

  22. Acknowledgements
    Shanti Liga &
    Prof G. Konstantatos
    Profs Aron Walsh & David O. Scanlon
    @Kavanagh_Sean_
    [email protected]
    Kavanagh et al. ‘Frenkel Excitons in Vacancy-Ordered Titanium
    Halide Perovskites (Cs2
    TiX6
    )’ J. Phys. Chem. Lett. 2022, 13,
    10965–10975

    View full-size slide

  23. 25
    Cs2
    MX6
    – Crystal Structure

    View full-size slide

  24. Cs2
    MX6
    – Remaining GW Issues
    • Severe underscreening of e-h interactions due to
    correlated, localized d orbitals and significant vacant
    space in these materials ➡ true challenge for theory.
    • Excitonic effects explain the origin of experiment-
    theory discrepancies and bring absorption spectra
    into excellent agreement, but quantitative bandgap
    prediction remains elusive.
    Acharya, S. et al. Importance of charge self-consistency in first-principles description of strongly correlated systems. npj Comput Mater 7, 208 (December 2021).
    Cunningham, B., Gruening, M., Pashov, D. & van Schilfgaarde, M. Quasiparticle Self consistent GW with ladder diagrams in W. arXiv:2106.05759 [cond-mat] (2021).

    View full-size slide