Upgrade to Pro — share decks privately, control downloads, hide ads and more …

Hidden Spontaneous Polarisation in the Sn2SbS2I3 Chalcohalide PV Absorber

Hidden Spontaneous Polarisation in the Sn2SbS2I3 Chalcohalide PV Absorber

Slides for my talk on "Hidden Spontaneous Polarisation in the Sn2SbS2I3 Chalcohalide PV Absorber" at MRS Spring 2021.

Open-access Materials Horizons paper at: https://doi.org/10.1039/D1MH00764E

See the YouTube talk here: https://youtu.be/H8cvJfZq8S8

Also find our open-access review on perovskite-inspired materials here: https://iopscience.iop.org/article/10.1088/1361-6528/abcf6d

For other research articles see:
https://bit.ly/3pBMxOG

For other talks on YouTube see:
https://bit.ly/2U5YgLf

Seán R. Kavanagh

May 12, 2021
Tweet

More Decks by Seán R. Kavanagh

Other Decks in Science

Transcript

  1. Hidden Spontaneous Polarisation in the ns2-Cation Sn2 SbS2 I3 Chalcohalide

    Photovoltaic Absorber Seán R. Kavanagh, Christopher N. Savory, David O. Scanlon, Aron Walsh [email protected] EL02.10.02 Cmcm b c Ibanez et al. (S, Se) S I
  2. Sn2 SbS2 I3 – ‘Perovskite-Inspired’ • Novel ns2-cation chalco-halide. •

    Mixed anions (and cations) allows mixed ionic-covalent character. • Strong dielectric screening? • Lattice polarity? • Defect Tolerance? • Nie et al. (Group of Sang Il Seok), demonstrated >4% efficiency in the first experimental device fabrication (Nov 2020). 1. Huang, Y.-T., Kavanagh, S. R., Scanlon, D. O., Walsh, A. & Hoye, R. L. Z. Perovskite-Inspired Materials for Photovoltaics -- From Design to Devices. 2021 Nanotechnology 32 132004 2. R. Nie, K. S. Lee, M. Hu, M. J. Paik and S. I. Seok, Heteroleptic Tin-Antimony Sulfoiodide for Stable and Lead-free Solar Cells. 2020 Matter, S2590238520304471.
  3. Sn2 SbS2 I3 – Structural Relaxation A. Ibanez, J.-C. Jumas,

    J. Olivier-Fourcade and E. Philippot, Journal of Solid State Chemistry, 1984, 55, 83–91.
  4. Sn2 SbS2 I3 – Structural Relaxation Sn Sb S I

    Cmcm Cmc2 1 b c ΔE(Cmc21 /Cmcm) = -35.8 meV/atom (RPA w/ HSE06 orbitals)
  5. Sn2 SbS2 I3 – Structural Relaxation Sn Sb S I

    Cmcm Cmc2 1 b c ΔE(Cmc21 /Cmcm) = -35.8 meV/atom (RPA w/ HSE06 orbitals)
  6. Sn2 SbS2 I3 – Structural Relaxation A. Ibanez, J.-C. Jumas,

    J. Olivier-Fourcade and E. Philippot, Journal of Solid State Chemistry, 1984, 55, 83–91.
  7. Sn2 SbS2 I3 – Spontaneous Polarisation Cmcm ⟹ Cmc21 ΔP(Cmc21

    /Cmcm) = 37 μC/cm2 (optB86b-vdW) c.f. BaTiO3 (∼27 μC/cm2), KNbO3 (∼30 μC/cm2), MAPbI3 (4.4 μC/cm2), SbSI (11 μC/cm2)
  8. Sn2 SbS2 I3 – Potential Defect Tolerance Eg = 1.08

    eV (HSE06 + SOC) - Small band gap - Anti-bonding character, high- energy VBM (Sn 5s2 – anion p) - Mixed ionic-covalent bonding: - Strong dielectric screening - Wide conduction & valence bands - Atomic-chain structure (⟹ benign grain boundaries?) PL lifetime >7 ns recorded by Nie et al. R. Nie, K. S. Lee, M. Hu, M. J. Paik and S. I. Seok, Heteroleptic Tin-Antimony Sulfoiodide for Stable and Lead-free Solar Cells. 2020 Matter, S2590238520304471.
  9. Conclusions & Acknowledgements Spontaneous symmetry breaking and lattice polarization, hidden

    by macroscopic averaging, unveiled in Sn2 SbS2 I3 . o Potential benefits for charge separation and PV efficiency. Promising outlook for the application in high- efficiency solution-processed solar cells. Ongoing Molecular Dynamics calculations to further probe polarization switchability. @Kavanagh_Sean_ kavanase [email protected]