Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
GraphQLにおけるクライアントキャッシュ戦略
Search
KazukiHayase
March 16, 2023
Technology
0
3.4k
GraphQLにおけるクライアントキャッシュ戦略
KazukiHayase
March 16, 2023
Tweet
Share
More Decks by KazukiHayase
See All by KazukiHayase
要件定義・デザインフェーズでもAIを活用して、コミュニケーションの密度を高める
kazukihayase
0
350
CIでのgolangci-lintの実行を約90%削減した話
kazukihayase
0
500
もし今からGraphQLを採用するなら
kazukihayase
13
5.5k
Goでテストをしやすくするためにやったこと
kazukihayase
1
850
GraphQLクライアントの技術選定 2023冬
kazukihayase
9
7.4k
Introduction and Insights of the Hasura-based Architecture
kazukihayase
0
1k
自分だけが頑張るのをやめて、フルスタックなチームを作る
kazukihayase
2
3.4k
Goでテンプレートからファイルを自動生成するCLIを作る
kazukihayase
0
1.5k
生産性が上がり続けるチームを作るための第一歩
kazukihayase
4
3.8k
Other Decks in Technology
See All in Technology
Databricks Free Editionで始めるMLflow
taka_aki
0
860
Beyond Prompts: Building Intelligent Applications with Genkit and the Model Context Protocol
peterfriese
0
110
Master Dataグループ紹介資料
sansan33
PRO
1
3.9k
Boxを“使われる場”にする統制と自動化の仕組み
demaecan
0
230
AI時代におけるドメイン駆動設計 入門 / Introduction to Domain-Driven Design in the AI Era
fendo181
0
570
Digitization部 紹介資料
sansan33
PRO
1
5.9k
なぜ新機能リリース翌日にモニタリング可能なのか? 〜リードタイム短縮とリソース問題を「自走」で改善した話〜 / data_summit_findy_Session_2
sansan_randd
1
150
MCP サーバーの基礎から実践レベルの知識まで
azukiazusa1
26
13k
次世代のメールプロトコルの斜め読み
hirachan
3
440
NOT A HOTEL SOFTWARE DECK (2025/11/06)
notahotel
0
3.8k
[2025-11-06] ベイズ最適化の基礎とデザイン支援への応用(CVIMチュートリアル)
yuki_koyama
1
140
【AWS reInvent 2025 関西組 事前勉強会】re:Inventの“感動と興奮”を思い出してモチベ爆上げしたいです
ttelltte
0
120
Featured
See All Featured
Unsuck your backbone
ammeep
671
58k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
48
9.8k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
31
2.9k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
37
2.6k
How To Stay Up To Date on Web Technology
chriscoyier
791
250k
Visualization
eitanlees
150
16k
How GitHub (no longer) Works
holman
315
140k
For a Future-Friendly Web
brad_frost
180
10k
The Art of Programming - Codeland 2020
erikaheidi
56
14k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
36
6.1k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
35
3.2k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
333
22k
Transcript
GraphQLにおけるクライアントキャッシュ戦略 2023.03.15リクルート × BASE × バイセル 【第1回フロントエンド勉強会】React & GraphQL 2023.03.15
自己紹介 名前:早瀬和輝 出身:愛知県名古屋市 経歴:BuySell Technologiesに2021年に新卒入社 趣味:開発、マンガ、アニメ、ベース、バスケ Twitter:@KazukiHayase
はじめに • 今回話すのはクライアント側のキャッシュについて • CDNなどのキャッシュについては触れないです
アジェンダ キャッシュの仕組み 01 キャッシュにおける課題 02 課題解決へのアプローチ 03 まとめ 04
アジェンダ キャッシュの仕組み 01 キャッシュにおける課題 02 課題解決へのアプローチ 03 まとめ 04
キャッシュの仕組み • いくつかのGraphQL Clientにはキャッシュ機構が備わっている ◦ Apollo Client, Relay, urql •
キャッシュを活用することで無駄なリクエストが減る • そのためにはキャッシュ機構の正しい理解が必要
キャッシュ機構において重要な要素 データの正規化 01 キャッシュの 利用条件 02
データの正規化 • レスポンスデータは正規化されてキャッシュに保存される • 正規化することで ◦ キャッシュへのアクセスが早くなる ◦ データサイズを小さくすることができる
正規化の流れ 1. Queryの結果を個別のオブジェクトに分割 2. 分割したオブジェクトに一意な識別子を割り当て 3. フラットなデータ構造に格納
正規化の流れの例 右図のような SchemaとQueryを考える ※ Apollo Clientを例に解説しますが、 他のClientでも大枠の流れは同じです
正規化の流れの例 Queryの実行結果として 右図のようなレスポンスを受け取る
正規化の流れの例 1. Queryの結果を個別の オブジェクトに分割 2. 分割したオブジェクトに一意 な識別子を割り当て 3. フラットなデータ構造に格納
正規化の流れの例 1. Queryの結果を個別の オブジェクトに分割 2. 分割したオブジェクトに一意 な識別子を割り当て 3. フラットなデータ構造に格納 Task:1
Task:2 Task:3
正規化の流れの例 1. Queryの結果を個別の オブジェクトに分割 2. 分割したオブジェクトに一意 な識別子を割り当て 3. フラットなデータ構造に格納
キャッシュの利用条件 • データが全てキャッシュにある場合はキャッシュを利用 • 一部でもデータがキャッシュにない場合はリクエストを実行
キャッシュの利用条件 • FetchTasks→FetchTasks2 ◦ キャッシュが利用できない ◦ リクエストは2回 • FetchTasks2→FetchTasks ◦
キャッシュが利用できる ◦ リクエストは1回
アジェンダ キャッシュの仕組み 01 キャッシュにおける課題 02 課題解決へのアプローチ 03 まとめ 04
キャッシュにおける課題 一部でもデータがキャッシュにない場合はリクエストが実行される Queryの定義によっては全くキャッシュが利用されない
キャッシュにおける課題 逆に常にキャッシュが利用されるようにしようとすると 考慮するべきことが多い
キャッシュにおける課題 仮に常にキャッシュが利用されるようにしようとすると • Queryの実行順序を工夫する • オブジェクト単位でQueryをまとめる • アプリケーション全体でQueryを使い回す
できなくはないが、、
個人的にはデメリットの方が大きいと判断
キャッシュにおける課題 • Queryの実行順序を工夫する ◦ →実行順序まで考慮するのは現実的ではない • オブジェクト単位でQueryをまとめる ◦ →オーバーフェッチにつながる、RESTとほぼ変わらない •
アプリケーション全体でQueryを使い回す ◦ →Query変更時の影響範囲が広い
アジェンダ キャッシュの仕組み 01 キャッシュにおける課題 02 課題解決へのアプローチ 03 まとめ 04
課題解決へのアプローチ ページ単位での キャッシュ最適 化 01 データを 3種類に分類 02
ページ単位でのキャッシュ最適化 • ページ単位でキャッシュ最適化を考える • アプリケーション全体でのキャッシュの利用は考慮しない ◦ Queryによってはキャッシュが利用される場合もある
ページ単位でのキャッシュ最適化 ページを跨いだキャッシュの利用を考慮しないことで • ページで使用するデータを宣言的に定義できる ◦ GraphQLの良さを最大限活かす • ページ同士が疎結合になる ◦ Queryの変更の影響範囲が閉じる
データを3種類に分類 データを3種類に分類して、分類ごとにQueryを定義 することでキャッシュを利用しやすくする
データを3種類に分類 コンテンツデータ マスタデータ 汎用マスタデータ 01 02 03
コンテンツデータ • コンテンツ表示用のデータ • アクションに応じてQueryを定義する ◦ e.g. 初回表示、検索、モーダル ◦ 1ページに複数のQueryが定義されていることもある
• 同じアクションであればキャッシュが利用される
マスタデータ • マスタデータやメタデータなどのシステム的に必要なデータ • 最初のレンダリング時のみリクエストが必要 • 2回目以降はキャッシュを利用する
汎用マスタデータ • 基本的には使用しない ◦ コンテンツデータ・マスタデータのみの運用をまずは考える • アプリケーション全体で利用するかつサイズの大きいデータ • どうしてもアプリケーション全体でキャッシュしたい際に使用 •
オーバーフェッチを許容
データ分類フロー ユーザーのアクションによって取得データが変わるか? コンテンツデータ マスタデータ 汎用マスタデータ Yes ページごとで重複して取得する事に パフォーマンス上の懸念があるか? No Yes
No
全体像 PageComponentA PageComponentA ContentQuery PageComponentA MasterQuery GeneralMasterQuery PageComponentB PageComponentB ContentQuery
PageComponentB MasterQuery ページコンポーネントごとに コンテンツ・マスタデータのQueryを定義 汎用マスタデータのQueryは コンポーネントの外で定義
データ分類の例 タスク検索画面
コンテンツデータ • タスクの検索結果のデータ • 検索の度に表示内容が変わる • 同じ検索条件ならキャッシュ を利用
マスタデータ • 検索で利用する選択肢データ • 検索結果に関係なくデータは 同じ • 初回以降はキャッシュを利用
汎用マスタデータ • 検索で利用する選択肢データ • 数千規模のデータかつ 他の画面でも使うと仮定 • この画面のみの利用であれば マスタデータに含める
アジェンダ キャッシュの仕組み 01 キャッシュにおける課題 02 課題解決へのアプローチ 03 まとめ 04
まとめ • キャッシュの仕組みを踏まえた上での戦略 ◦ ページ単位でのキャッシュ最適化 ◦ データを3種類に分類 • GraphQLの良さを生かしつつ、キャッシュも活用できる •
ただし懸念はある ◦ 汎用データが増えすぎると今回紹介した課題が再度浮上する
THANK YOU