$30 off During Our Annual Pro Sale. View Details »

ABC2019 Spring

ABC2019 Spring

5月26日に開催された「Android Bazaar and Conference 2019 Spring」の発表資料です。

** このプログラムには、一部の成人の方が不愉快に感じられる表現、また未成年には不適切な表現が含まれている可能性があります。聴講には参加者または保護者の判断が必要です。 **

ARIYAMA Keiji

May 26, 2019
Tweet

More Decks by ARIYAMA Keiji

Other Decks in Technology

Transcript

  1. C-LIS CO., LTD.

    View Slide

  2. "OESPJE#B[BBSBOE$POGFSFODF4QSJOH

    ౦ւେֶߴྠΩϟϯύε
    ͜ͷϓϩάϥϜʹ͸ɺҰ෦ͷ੒ਓͷํ͕ෆշʹײ͡ΒΕΔදݱɺ·ͨະ
    ੒೥ʹ͸ෆద੾ͳදݱؚ͕·Ε͍ͯΔՄೳੑ͕͋Γ·͢ɻௌߨʹ͸ࢀՃऀ
    ·ͨ͸อޢऀͷ൑அ͕ඞཁͰ͢ɻ

    View Slide

  3. C-LIS CO., LTD.


    ༗ࢁܓೋʢ,FJKJ"3*:"."ʣ
    $-*4$0 -5%
    Photo : Koji MORIGUCHI (MORIGCHOWDER)
    "OESPJEΞϓϦ։ൃνϣοτσΩϧ
    ػցֶश͸ͪΐͬͱ΍ͬͨ͜ͱ͋Γ·͢
    ΍ͬͯ·ͤΜ

    View Slide



  4. ؟ڸ່ͬͷΠϥετΛ

    Πϯλʔωοτ͔ΒࣗಈͰऩू͍ͨ͠ʂ

    View Slide

  5. ؟ڸ່ͬ൑ఆ


    View Slide

  6. ؟
    ڸ
    ͬ

    ˜ࠜઇΕ͍

    View Slide

  7. 5FOTPS'MPXൃදʢ೥݄ʣ


    View Slide

  8. ϓϩάϥϛϯάͱػցֶश


    Programming
    Machine Learning
    Rules
    Data
    Answer
    Rules
    Data
    Answer
    IUUQTXXXZPVUVCFDPNXBUDI WUKT)4*(*U

    View Slide

  9. ػցֶशΛར༻ͨ͋͠Ε͜Ε


    IUUQLJWBOUJVNIBUFCMPKQFOUSZ
    TensorFlowͰΞχϝΏΔΏΓͷ੍࡞ձࣾΛࣝผ͢Δ
    IUUQCPIFNJBIBUFOBCMPHDPNFOUSZ
    σΟʔϓϥʔχϯάͰ͓ͦদ͞Μͷ࿡ͭࢠ͸ݟ෼͚ΒΕΔͷ͔ʁ
    IUUQCPIFNJBIBUFOBCMPHDPNFOUSZ
    IUUQDISJTUJOBIBUFOBCMPHDPNFOUSZ
    Deep LearningͰϥϒϥΠϒʂΩϟϥΛࣝผ͢Δ

    View Slide



  10. View Slide



  11. ݱࡏ

    View Slide



  12. View Slide

  13. https://twitter.com/_meganeco
    .FHBOF$P1MBZHSPVOE


    https://playground.megane.ai/

    View Slide



  14. ධՁ༻αʔόʔ
    ܇࿅ɾֶश༻αʔόʔ܈
    σʔληοτసૹ
    ʢTFRecordʣ ֶशࡁϞσϧऔಘ
    ը૾औಘ
    ը૾औಘ
    ϥϕϧ
    ෇͚
    σʔληοτ؅ཧ
    αʔόʔ
    ը૾ऩूݩ
    ը૾ऩू
    ϥϕϧ
    ෇͚
    σʔληοτ

    ؅ཧΞϓϦ
    playground.megane.ai
    ֶशࡁΈϞσϧ഑ஔ

    View Slide



  15. ը૾σʔλͷऩू

    View Slide

  16. σʔλͷऔಘݩαʔϏε


    View Slide



  17. IUUQTCMPHUXJUUFSDPNEFWFMPQFSFO@VTUPQJDTUPPMTOFXEFWFMPQFSSFRVJSFNFOUTUPQSPUFDUPVSQMBUGPSNIUNM

    View Slide



  18. 9,572
    1,233
    ը૾ͱΞΧ΢ϯτ͸૝૾Ҏ্ʹফ͑Δ

    View Slide

  19. .BTUPEPO


    IUUQTQBXPPOFU
    IUUQTNTUEOKQ

    View Slide



  20. ϞσϧͷΞʔΩςΫνϟ

    View Slide



  21. DPOW
    YY
    YY
    SFMV
    Yͷը૾ΛYͷϑΟϧλʔͰ৞ΈࠐΉ
    ͦΜͳ࣌୅΋͋Γ·ͨ͠

    View Slide

  22. 3FTJEVBM/FUXPSLT


    DPOW
    YY
    GD

    GD

    YY
    %SPQPVU

    %SPQPVU

    DPOW
    YY
    DPOW
    YY
    CPUUMFOFDL
    DPOW
    YY
    TUSJEF
    QPPMJOH
    SFTJEVBM@CMPDL@

    SFTJEVBM@CMPDL@

    SFTJEVBM@CMPDL@

    SFTJEVBM@CMPDL@

    SFTJEVBM@CMPDL@

    SFTJEVBM@CMPDL@

    SFMV
    SFMV
    SFMV
    SFMV
    SFMV
    CO CO

    View Slide

  23. ֶशɾ܇࿅


    Ϟσϧ
    [0.0 - 1.0]
    1.0 or 0.0
    ग़ྗ
    ਖ਼ղσʔλ
    ʢڭࢣ৴߸ʣ
    ...
    ϥϕϧ
    4JHNPJE

    View Slide



  24. σʔληοτ

    View Slide




  25. ؟ڸ່ͬɹຕ
    ඇ؟ڸ່ͬຕ
    988ຕ


    View Slide




  26. ؟ڸ່ͬɹ ຕ
    ඇ؟ڸ່ͬ ຕ
    4ສ3,432ຕ


    View Slide




  27. ؟ڸ່ͬɹ ຕ
    ඇ؟ڸ່ͬ ຕ
    4ສ4,403ຕ


    View Slide

  28. ऩूͨ͠ը૾σʔλ૯਺


    1,159ສ4,657ຕ
    (2019.05.26)

    View Slide

  29. ը૾ͷऔಘݩ಺༁


    twitter.com 10,377,343
    pawoo.net 883,632
    mstdn.jp 311,773
    others 21,909
    (2019.05.26)

    View Slide

  30. ϥϕϧͷछྨ
    PSJHJOBM@BSU
    OTGX
    GBWPSJUF
    QIPUP
    JMMVTU
    DPNJD


    GBDF
    GFNBMF
    NFHBOF
    TDISPPM@VOJGPSN
    CMB[FS@VOJGPSN
    TBJMPS@VOJGPSN
    HM
    LFNPOP
    NBMF
    CM
    DBU
    EPH
    GPPE
    EJTMJLF

    View Slide



  31. View Slide



  32. Positive Negative Positive Rate
    megane 18,715 25,689 0.4215
    nsfw 16,720 21,036 0.4428
    favorite 16,004 12,415 0.5631
    photo 16,136 14,010 0.5353
    illust 24,252 14,021 0.6337
    comic 4,052 14,564 0.2177
    cat 5,080 16,090 0.2400
    food 5,795 14,167 0.2903
    (2019.05.26)

    View Slide



  33. ϞσϧͷධՁ

    View Slide



  34. ʰྑ͍Ϟσϧʱͱ͸ͳʹ͔

    View Slide



  35. ϩε͕௿͍Ϟσϧʁ

    View Slide



  36. ग़ྗώετάϥϜ͕ཧ૝తͳϞσϧʁ

    View Slide

  37. σʔληοτ
    ֶश༻

    ධՁ༻

    ϞσϧͷධՁ


    View Slide

  38. ֶश༻

    ධՁ༻

    ϞσϧͷධՁ


    ධՁ༻
    Positive Samples
    O
    Negative Samples
    O

    View Slide

  39. େ͖ͳภΓͷ͋Δσʔλ


    Positive (>= 0.5) Negative (< 0.5) Positive Rate
    megane 164,872 5,905,699 0.02715
    nsfw 827,529 5,136,725 0.1387
    (2019.05.26)

    View Slide

  40. ධՁσʔλ
    Positive Samples
    True PositiveʢTPʣ False PositiveʢFPʣ
    Negative Samples
    True NegativeʢTNʣ False NegativeʢFNʣ


    1PTJUJWF/FHBUJWFαϯϓϧ͸ಠཱͯ͠ධՁ͢Δ

    View Slide

  41. 4FOTJUJWJUZͱ4QFDJpDJUZ


    ˠ4FOTJUJWJUZʢײ౓ʣ
    ˠ4QFDJpDJUZʢಛҟ౓ʣ
    51'1
    51
    5/'/
    5/

    View Slide

  42. 4FOTJUJWJUZͱ4QFDJpDJUZͷ૊Έ߹Θͤ


    View Slide

  43. 4FOTJUJWJUZͱ4QFDJpDJUZͷ૊Έ߹Θͤ


    View Slide

  44. 4FOTJUJWJUZͱ4QFDJpDJUZͷฏۉʁ


    1SFDJTJPO 4FOTJUJWJUZ4QFDJpDJUZ

    View Slide

  45. ݱࡏͷධՁؔ਺


    WBSJBODFWBSJBODF 4FOTJUJWJUZ 4QFDJpDJUZ

    QSFDJTJPO 4FOTJUJWJUZ4QFDJpDJUZ

    QSFDJTJPOQSFDJTJPO WBSJBODF

    View Slide



  46. (2019.05.26)
    Positive Negative Positive Rate Sensitivity Specificity
    megane 18,715 25,689 0.4215 0.8917 0.9469
    nsfw 16,720 21,036 0.4428 0.8242 0.8786
    favorite 16,004 12,415 0.5631 0.8729 0.7648
    photo 16,136 14,010 0.5353 0.9764 0.9339
    illust 24,252 14,021 0.6337 0.9616 0.9539
    comic 4,052 14,564 0.2177 0.9516 0.9794
    cat 5,080 16,090 0.2400 0.9156 0.9376
    food 5,795 14,167 0.2903 0.8898 0.9691
    ֤Ϟσϧͷਫ਼౓

    View Slide



  47. ػցֶशϫʔΫϑϩʔ

    View Slide

  48. ୯ମϞσϧ


    ୯ମϞσϧ
    [0.0 - 1.0]
    ग़ྗ
    256x256x3

    View Slide

  49. ϥϕϧͷछྨ
    PSJHJOBM@BSU
    OTGX
    GBWPSJUF
    QIPUP
    JMMVTU
    DPNJD


    GBDF
    GFNBMF
    NFHBOF
    TDISPPM@VOJGPSN
    CMB[FS@VOJGPSN
    TBJMPS@VOJGPSN
    HM
    LFNPOP
    NBMF
    CM
    DBU
    EPH
    GPPE
    EJTMJLF

    View Slide

  50. ౷߹Ϟσϧ


    ग़ྗ
    [0.0 - 1.0]
    [0.0 - 1.0]
    :
    ౷߹Ϟσϧ
    [0.0 - 1.0]
    [0.0 - 1.0]
    [0.0 - 1.0]
    256x256x3

    View Slide



  51. ෳ਺ͷ୯ମϞσϧ͔Β౷߹ϞσϧΛֶशɾ܇࿅͢Δ

    ,OPXMFEHF$PODFOUSBUJPO
    ౷߹Ϟσϧ
    ֶशࡁΈ୯ମϞσϧ
    [0.0 - 1.0]
    ਖ਼ղσʔλ
    ʢڭࢣ৴߸ʣ
    [0.0 - 1.0]
    [0.0 - 1.0]
    [0.0 - 1.0]
    [0.0 - 1.0]
    : :
    ग़ྗ
    [0.0 - 1.0]
    [0.0 - 1.0]
    [0.0 - 1.0]
    [0.0 - 1.0]
    [0.0 - 1.0]
    :
    256x256x3

    View Slide



  52. σʔληοτͷ੔උ
    ϞσϧͷֶशͱධՁ
    ϞσϧͷσϓϩΠ
    طଘσʔληοτͷਪ࿦

    View Slide

  53. train_merge
    train_single: megane
    train_single: nsfw
    train_single: illust
    train_single: photo
    train_single: favorite
    train_single: cat
    train_single: food
    ֶशͱධՁͷϫʔΫϑϩʔ


    create_dataset

    View Slide



  54. ධՁ༻αʔόʔ
    ܇࿅ɾֶश༻αʔόʔ܈
    σʔληοτసૹ
    ʢTFRecordʣ ֶशࡁϞσϧऔಘ
    ը૾औಘ
    ը૾औಘ
    ϥϕϧ
    ෇͚
    σʔληοτ؅ཧ
    αʔόʔ
    ը૾ऩूݩ
    ը૾ऩू
    ϥϕϧ
    ෇͚
    σʔληοτ

    ؅ཧΞϓϦ
    playground.megane.ai
    ֶशࡁΈϞσϧ഑ஔ

    View Slide

  55. ߴՐྗίϯϐϡʔςΟϯάαʔόʔʢݕূ࣮ݧػʣ
    $16ɹɹɹɹ9FPO&WίΞʷ
    .FNPSZɹɹ(#
    ετϨʔδɹ44%(#ʷʢ3"*%ʣ
    (16ɹɹɹ/7*%*"5*5"/9(#
    ɹɹɹɹɹ/7*%*"5*5"/9(#
    ɹɹɹɹɹ/7*%*"(F'PSDF(595J(#
    ɹɹɹɹɹ/7*%*"(F'PSDF(595J(#


    ʢDriver Version: 410.48ʣ

    View Slide

  56. ߴՐྗίϯϐϡʔςΟϯάαʔόʔʢݕূ࣮ݧػʣ
    $16ɹɹɹɹ9FPO&WίΞʷ
    .FNPSZɹɹ(#
    ετϨʔδɹ44%(#ʷʢ3"*%ʣ
    (16ɹɹɹ".%3BEFPO7FHB(#
    ".%3BEFPO7FHB(#


    View Slide

  57. "SHP8PSLqPXʢ,VCFSOFUFTʣ


    View Slide



  58. %FNP

    View Slide



  59. "OESPJEΞϓϦͰͷར༻

    View Slide

  60. ͞·͟·ͳख๏
    5FOTPS'MPXGPS.PCJMF
    5FOTPS'MPX-JUF
    5FOTPS'MPX-JUFྔࢠԽϞσϧ
    5FOTPS'MPX-JUFྔࢠԽϞσϧ//ʢ/FVSBM/FUXPSLTʣ"1*


    View Slide



  61. View Slide

  62. 'PPE(BMMFSZ


    IUUQTHJUIVCDPNLFJKJGPPE@HBMMFSZ@XJUI@UFOTPSqPX

    View Slide

  63. ৯΂෺ʢ'PPEʣ൑ผϞσϧ


    FoodϞσϧ
    [0.0 - 1.0]
    ग़ྗ
    128x128x3

    View Slide

  64. ͞·͟·ͳ࣮૷


    IUUQTHJUIVCDPNLFJKJGPPE@HBMMFSZ@XJUI@UFOTPSqPXCSBODIFT

    View Slide



  65. "OESPJE//"1*

    View Slide

  66. "OESPJE/FVSBM/FUXPSLT"1*


    IUUQTEFWFMPQFSBOESPJEDPNOELHVJEFTOFVSBMOFUXPSLT
    ϞόΠϧ୺຤্ͰػցֶशͷܭࢉॲཧΛ࣮ߦ͢ΔͨΊʹઃܭ͞Εͨ

    "OESPJE$"1*ɻ"OESPJEʢ"1*ϨϕϧʣҎ߱ͰରԠɻ

    View Slide



  67. IUUQTCMPHLFJKJJPUFOTPSqPXBEWFOU@DBMFOEBSIUNM
    ͍·//"1*ʢ5FOTPS'MPX-JUFʣ͸࢖͑Δͷ͔

    View Slide

  68. ͞·͟·ͳ੍໿
    εΧϥʔͰͷԋࢉ͕Ͱ͖ͳ͍ɻʷOPSNBMJ[FE@JNBHFJNBHF@QI
    εϥΠε͕࢖͑ͳ͍ɻʷJNBHFJNBHF< >
    )ZQFSCPMJD5BOHFOU͕࢖͑ͳ͍ɻʷPVUQVUUGUBOI PVU@P⒎TFU



    IUUQTXXXUFOTPSqPXPSHMJUFHVJEFPQT@DPNQBUJCJMJUZVOTVQQPSUFE@PQFSBUJPOT

    View Slide



  69. ػछ໊ NN API͋Γ NN APIͳ͠
    Essential PH-1 556,323ns 185,372,624ns
    Pixel 2 450,807ns 187,395,464ns
    Pixel 3 477,489ns 129,994,563ns
    ਪ࿦଎౓ͷൺֱ
    IUUQTHJUIVCDPNLFJKJGPPE@HBMMFSZ@XJUI@UFOTPSqPXSFMFBTFTUBHUqJUF@OOBQJ

    View Slide



  70. ਫ਼౓͕ۃ୺ʹ௿Լ

    View Slide

  71. ྔࢠԽ


    View Slide



  72. max: 14.586626
    min: -3.8083103
    ϞσϧΛߏ੒͍ͯ͠Δύϥϝʔλʔͷ࠷େɾ࠷খ஋Λ֬ೝ
    ྔࢠԽͷࡍʹߟྀ͢Δඞཁ͕͋Δʁ

    View Slide



  73. ࠓޙͷ՝୊

    View Slide

  74. WARNING:tensorflow:From /Users/keiji_ariyama/PycharmProjects/dataset_manager/server/picture_single_discriminator/tf_model/model_res5.py:
    28: conv2d (from tensorflow.python.layers.convolutional) is deprecated and will be removed in a future version.
    Instructions for updating:
    Use keras.layers.conv2d instead.
    WARNING:tensorflow:From /Users/keiji_ariyama/anaconda3/lib/python3.6/site-packages/tensorflow/python/framework/op_def_library.py:263:
    colocate_with (from tensorflow.python.framework.ops) is deprecated and will be removed in a future version.
    Instructions for updating:
    Colocations handled automatically by placer.
    WARNING:tensorflow:From /Users/keiji_ariyama/PycharmProjects/dataset_manager/server/picture_single_discriminator/tf_model/model_res5.py:
    35: batch_normalization (from tensorflow.python.layers.normalization) is deprecated and will be removed in a future version.
    Instructions for updating:
    Use keras.layers.batch_normalization instead.
    WARNING:tensorflow:From /Users/keiji_ariyama/PycharmProjects/dataset_manager/server/picture_single_discriminator/tf_model/model_res5.py:
    68: flatten (from tensorflow.python.layers.core) is deprecated and will be removed in a future version.
    Instructions for updating:
    Use keras.layers.flatten instead.
    WARNING:tensorflow:From /Users/keiji_ariyama/PycharmProjects/dataset_manager/server/picture_single_discriminator/tf_model/model_res5.py:
    74: dense (from tensorflow.python.layers.core) is deprecated and will be removed in a future version.
    Instructions for updating:
    Use keras.layers.dense instead.
    WARNING:tensorflow:From /Users/keiji_ariyama/PycharmProjects/dataset_manager/server/picture_single_discriminator/tf_model/model_res5.py:
    75: dropout (from tensorflow.python.layers.core) is deprecated and will be removed in a future version.


    5FOTPS'MPXରԠ

    View Slide

  75. "SHP8PSLqPXͷ҆ఆԽ


    View Slide

  76. σʔληοτ؅ཧը໘ͷ8FCΞϓϦԽ


    View Slide



  77. View Slide

  78. C-LIS CO., LTD.
    ຊࢿྉ͸ɺ༗ݶձࣾγʔϦεͷஶ࡞෺Ͱ͢ɻຊࢿྉͷશ෦ɺ·ͨ͸Ұ෦ʹ͍ͭͯɺஶ࡞ऀ͔ΒจॻʹΑΔڐ୚Λಘͣʹෳ੡͢Δ͜ͱ͸ې͡ΒΕ͍ͯ·͢ɻ
    5IF"OESPJE4UVEJPJDPOJTSFQSPEVDFEPSNPEJpFEGSPNXPSLDSFBUFEBOETIBSFECZ(PPHMFBOEVTFEBDDPSEJOHUPUFSNTEFTDSJCFEJOUIF$SFBUJWF$PNNPOT"UUSJCVUJPO-JDFOTF
    ֤੡඼໊ɾϒϥϯυ໊ɺձ໊ࣾͳͲ͸ɺҰൠʹ֤ࣾͷ঎ඪ·ͨ͸ొ࿥঎ඪͰ͢ɻຊࢿྉதͰ͸ɺ˜ɺšɺäΛׂѪ͍ͯ͠·͢ɻ
    5IF"OESPJESPCPUJTSFQSPEVDFEPSNPEJpFEGSPNXPSLDSFBUFEBOETIBSFECZ(PPHMFBOEVTFEBDDPSEJOHUPUFSNTEFTDSJCFEJOUIF$SFBUJWF$PNNPOT"UUSJCVUJPO-JDFOTF

    View Slide