Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ML Ops Study 2
Search
ARIYAMA Keiji
May 29, 2018
Technology
0
140
ML Ops Study 2
5月29日にクックパッド株式会社で開催されたML Ops Study #2の発表資料です。
ARIYAMA Keiji
May 29, 2018
Tweet
Share
More Decks by ARIYAMA Keiji
See All by ARIYAMA Keiji
Build with AI
keiji
0
220
DroidKaigi 2023
keiji
0
1.8k
TechFeed Conference 2022
keiji
0
280
Android Bazaar and Conference Diverse 2021 Winter
keiji
0
880
ci-cd-conference-2021
keiji
1
1.2k
Android Bazaar and Conference 2021 Spring
keiji
3
810
TFUG KANSAI 20190928
keiji
0
120
Softpia Japan Seminar 20190724
keiji
1
180
pixiv App Night 20190611
keiji
1
600
Other Decks in Technology
See All in Technology
COVESA VSSによる車両データモデルの標準化とAWS IoT FleetWiseの活用
osawa
1
280
Snowflake Intelligenceにはこうやって立ち向かう!クラシルが考えるAI Readyなデータ基盤と活用のためのDataOps
gappy50
0
180
AI開発ツールCreateがAnythingになったよ
tendasato
0
130
Android Audio: Beyond Winning On It
atsushieno
0
110
開発者を支える Internal Developer Portal のイマとコレカラ / To-day and To-morrow of Internal Developer Portals: Supporting Developers
aoto
PRO
1
460
サンドボックス技術でAI利活用を促進する
koh_naga
0
200
LLMを搭載したプロダクトの品質保証の模索と学び
qa
0
1k
RSCの時代にReactとフレームワークの境界を探る
uhyo
10
3.4k
Webブラウザ向け動画配信プレイヤーの 大規模リプレイスから得た知見と学び
yud0uhu
0
230
実践!カスタムインストラクション&スラッシュコマンド
puku0x
0
380
2025年夏 コーディングエージェントを統べる者
nwiizo
0
140
Firestore → Spanner 移行 を成功させた段階的移行プロセス
athug
1
470
Featured
See All Featured
Intergalactic Javascript Robots from Outer Space
tanoku
272
27k
Building Applications with DynamoDB
mza
96
6.6k
The Illustrated Children's Guide to Kubernetes
chrisshort
48
50k
BBQ
matthewcrist
89
9.8k
[RailsConf 2023] Rails as a piece of cake
palkan
57
5.8k
jQuery: Nuts, Bolts and Bling
dougneiner
64
7.9k
Practical Orchestrator
shlominoach
190
11k
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
162
15k
The Art of Programming - Codeland 2020
erikaheidi
56
13k
Build The Right Thing And Hit Your Dates
maggiecrowley
37
2.9k
Site-Speed That Sticks
csswizardry
10
810
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
8
920
Transcript
C-LIS CO., LTD.
.-0QT4UVEZ BUΫοΫύουגࣜձࣾ 5FOTPS'MPXͷ܇࿅ࡁΈϞσϧΛ "OESPJEΞϓϦʹࡌͤΔͱ͖ʹ ۤ࿑ͨ͠ 5FOTPS'MPXͰझຯͷը૾ऩूαʔόʔΛ࡞Δ݄߸
C-LIS CO., LTD. ༗ࢁܓೋʢ,FJKJ"3*:"."ʣ $-*4$0 -5% Photo :
Koji MORIGUCHI (MORIGCHOWDER) "OESPJEΞϓϦ։ൃνϣοτσΩϧ ػցֶशͪΐͬͱͬͨ͜ͱ͋Γ·͢
C-LIS CO., LTD.
C-LIS CO., LTD. ͬ
ຊ൪ڥͷೖܦݧ͕ඞཁͳΒ ೖͯ͠͠·͍͍͑͡Όͳ͍
؟ ڸ ͬ ່ ࠜઇΕ͍
Έͷ؟ڸ່ͬը૾Λ ࣗಈͰऩू͍ͨ͠
̎Ϋϥεྨ 1 0
ݱࡏͷγεςϜ
ධՁ༻ αʔόʔ ܇࿅ɾֶश༻αʔόʔ σʔληοτసૹ ʢTFRecordʣ ֶशࡁΈ ύϥϝʔλʔऔಘ ը૾औಘ
ը૾औಘ ϥϕϧ ͚ σʔληοτཧ αʔόʔ σʔλऩूݩ αʔϏε ը૾औಘ ϥϕϧ ͚ Android ΞϓϦ
σʔληοτཧαʔόʔ $16"UISPO/FP()[ .FNPSZ(# 4UPSBHF44%(# )%%5# 3"*%
σʔληοτཧαʔόʔͷׂ ը૾σʔλͷऩू ϝλσʔλʢΞϊςʔγϣϯɾϥϕϧʣͷཧ "1*ͷఏڙ ֶश༻σʔλʢ5'3FDPSEʣͷੜ
ը૾σʔλͷऩू
ϝλσʔλͷཧ
ϝλσʔλͷཧ label: 2 left: 283 top: 190 right:
435 bottom:301 = 1.0
ϥϕϧͷछྨ PSJHJOBM@BSU OTGX GBWPSJUF QIPUP JMMVTU DPNJD GBDF
GFNBMF NFHBOF TDISPPM@VOJGPSN CMB[FS@VOJGPSN TBJMPS@VOJGPSN HM LFNPOP NBMF CM DBU EPH GPPE EJTMJLF
"1*ͷఏڙ ը૾Ϧετͷऔಘ ը૾ͷऔಘ ը૾ͷݕࡧʢϥϕϧʣ ϥϕϧͷઃఆ ϥϕϧະઃఆը૾ͷϦετΛऔಘ σʔλऔಘݩ5XJUUFS*%ͷՃɾআ
ֶश༻σʔλͷੜ 5'3FDPSEܗࣜPS+1&( $47ܗࣜ ը૾ͷϦαΠζ͜ͷஈ֊Ͱߦ͏ʢτϥϑΟοΫΛݮ $ python ./create_dataset.py \
--base_dir /dataset/source/ \ --output_dir ~/tfrecords_classifier \ --image_size 256 \ --tag_names megane,nsfw,favorite,illust
σʔλͷάϧʔϓԽ 0 1 2 3 4 5 6
7 8 9 σʔληοτ ςετσʔληοτ
ධՁ༻ αʔόʔ ܇࿅ɾֶश༻αʔόʔ σʔληοτసૹ ʢTFRecordʣ ֶशࡁΈ ύϥϝʔλʔऔಘ ը૾औಘ
ը૾औಘ ϥϕϧ ͚ σʔληοτཧ αʔόʔ σʔλऩूݩ αʔϏε ը૾औಘ ϥϕϧ ͚ Android ΞϓϦ
ֶश༻αʔόʔ
{ "tag_name": "megane", "train_catalog_numbers": "0,1,2,3,4,5,6,7,8", "eval_catalog_numbers": "9", "data_augmentation": { "random_crop":
false, "random_colorize": true } } ֶश༻ͷઃఆϑΝΠϧ
ֶशͱݕূͷ࣮ߦ $ CUDA_VISIBLE_DEVICES=0,1 python ./train.py \ --learning_config config_megane.json
\ --tfrecords_dir ~/tfrecords_classifier \ --train_dir ~/train_single_discriminator \ --summary_dir ~/summary_single_discriminator \ --batch_size 64 \ --learning_rate 0.0001 \ --num_gpus 2 \ --max_step 100000 $ CUDA_VISIBLE_DEVICES=2 python ./eval.py \ --learning_config config_megane.json \ --tfrecords_dir ~/tfrecords_classifier \ --train_dir ~/train_single_discriminator \ --summary_dir ~/summary_single_discriminator $ tensorboard \ --logdir ~/summary_single_discriminator/megane/
ධՁ༻ αʔόʔ ܇࿅ɾֶश༻αʔόʔ σʔληοτసૹ ʢTFRecordʣ ֶशࡁΈ ύϥϝʔλʔऔಘ ը૾औಘ
ը૾औಘ ϥϕϧ ͚ σʔληοτཧ αʔόʔ σʔλऩूݩ αʔϏε ը૾औಘ ϥϕϧ ͚ Android ΞϓϦ
ධՁ༻αʔόʔ
ධՁͷ࣮ߦ $ python3 client.py \ --tag_name megane \
--train_base_path ~/train_single_discriminator \ --train_file_name precision-0.956463/megane.ckpt-294000 \ --batch_size 16 \ --limit_batch 100
ධՁ༻ αʔόʔ ܇࿅ɾֶश༻αʔόʔ σʔληοτసૹ ʢTFRecordʣ ֶशࡁΈ ύϥϝʔλʔऔಘ ը૾औಘ
ը૾औಘ ϥϕϧ ͚ σʔληοτཧ αʔόʔ σʔλऩूݩ αʔϏε ը૾औಘ ϥϕϧ ͚ Android ΞϓϦ
"OESPJEΞϓϦ
ۙͷ՝
ෆదը૾͕ଟ͗͢Δ
ෆదʢ/4'8ʣը૾ͱ؟ڸը૾ /4'8 positive: 36,083 → 7.17% negative:
466,738 ؟ڸ positive: 23,559 → 2.44% negative: 938,563
ෆదը૾ϑΟϧλʔΛ ΞϓϦʹΈࠐΉ
NPEFM NSFW positive: 5,628 negative: 17,253
NPEFM ֶशࡁΈύϥϝʔλʔϑΝΠϧ ֶशࡁΈϞσϧ .pb 170MB
NPEFM@MJUF ֶशࡁΈύϥϝʔλʔϑΝΠϧ ֶशࡁΈϞσϧ .pb 10.7MB
NPEFM@MJUF
Ϟσϧͷߏ .pb input result 128x128x3 1
private val IMAGE_WIDTH = 128 private val IMAGE_HEIGHT = 128
private val IMAGE_CHANNEL = 3 private val IMAGE_BYTES_LENGTH = IMAGE_WIDTH * IMAGE_HEIGHT * IMAGE_CHANNEL val imageByteBuffer: ByteBuffer = ByteBuffer.allocate(IMAGE_BYTES_LENGTH) val scaledBitmap = Bitmap.createScaledBitmap(bitmap, IMAGE_WIDTH, IMAGE_HEIGHT, false) scaledBitmap.copyPixelsToBuffer(imageByteBuffer) ը૾ΛόοϑΝʹ֨ೲ
val resultArray = FloatArray(1) fun recognize(imageByteArray: ByteArray): Float { val
start = Debug.threadCpuTimeNanos() tfInference.feed("input", imageByteArray, imageByteArray.size.toLong()) tfInference.run(arrayOf("result")) tfInference.fetch("result", resultArray) val elapsed = Debug.threadCpuTimeNanos() - start Log.d(TAG, "Elapsed: %d ns".format(elapsed)) return resultArray[0] } GFFESVOGFUDI
private val IMAGE_WIDTH = 128 private val IMAGE_HEIGHT = 128
private val IMAGE_CHANNEL = 3 private val IMAGE_BYTES_LENGTH = IMAGE_WIDTH * IMAGE_HEIGHT * IMAGE_CHANNEL val imageByteBuffer: ByteBuffer = ByteBuffer.allocate(IMAGE_BYTES_LENGTH) val scaledBitmap = Bitmap.createScaledBitmap(bitmap, IMAGE_WIDTH, IMAGE_HEIGHT, false) scaledBitmap.copyPixelsToBuffer(imageByteBuffer) scaledBitmap.recycle() ݪҼΒ͖͠ͷ ˢ"MQIBνϟϯωϧ͕ೖ͍ͬͯΔ
Ϟσϧͷߏ .pb input result 128x128x4 1
with tf.Graph().as_default() as g: image_ph = tf.placeholder( tf.uint8, [model.IMAGE_SIZE *
model.IMAGE_SIZE * 4], name='input') image = tf.cast(image_ph, tf.float32) image = tf.reshape( image, [model.IMAGE_SIZE, model.IMAGE_SIZE, 4]) image = image[:, :, :3] QCग़ྗ࣌ʹDIΛड͚ೖΕΔΑ͏ʹάϥϑΛมߋ
σϞ
'PPE(BMMFSZ https://github.com/keiji/food_gallery_with_tensorflow ΪϟϥϦʔʹอଘ͞Ε͍ͯΔ৯ͷը૾Λදࣔ http://techlife.cookpad.com/entry/2017/09/14/161756 ΫοΫύου։ൃऀϒϩά ྉཧ͖Ζ͘ʹ͓͚ΔྉཧʗඇྉཧผϞσϧͷৄࡉ
ΈࠐΜͰΈ͚ͨΕͲɺ ਫ਼͋·Γߴ͘ͳ͍ʜʜ
ࠓޙͷ՝ 5FOTPS'MPX-JUFͷҠߦ ߴਫ਼ͷϞσϧͷѹॖʢল༰ྔԽʣ 1SVOJOH 2VBOUJ[BUJPO %JTUJMMBUJPO ML Kit:
Machine Learning SDK for mobile developers (Google I/O '18) https://youtu.be/Z-dqGRSsaBs?t=32m10s
ࠓޙͷ՝ ֶशαΠΫϧΛࣗಈԽ͍͖͍ͯͨ͠ɻ ʢఆظతʹֶशσʔλͷੜͱసૹΛߦ͍ɺ࠶ֶश͢ΔͳͲʣ σʔλϕʔεͷߴԽ ɹϥϕϧݕࡧ͕ඇৗʹ͍ͷ͕՝ɻઃܭΛݟ͢ඞཁ͋Γ ɹݕࡧΠϯσοΫεͷ(PPHMF$MPVE4UPSFҠߦΛݕ౼
ࠓޙͷ՝ σʔληοτཧαʔόʔͷߋ৽ 5FOTPS'MPXΑΓɺ$16ʹ*OUFM"79͕ඞਢʹͳͬͨʢQJQ൛ʣ
C-LIS CO., LTD. ຊࢿྉɺ༗ݶձࣾγʔϦεͷஶ࡞Ͱ͢ɻຊࢿྉͷશ෦ɺ·ͨҰ෦ʹ͍ͭͯɺஶ࡞ऀ͔ΒจॻʹΑΔڐΛಘͣʹෳ͢Δ͜ͱې͡ΒΕ͍ͯ·͢ɻ 5IF"OESPJE4UVEJPJDPOJTSFQSPEVDFEPSNPEJpFEGSPNXPSLDSFBUFEBOETIBSFECZ(PPHMFBOEVTFEBDDPSEJOHUPUFSNTEFTDSJCFEJOUIF$SFBUJWF$PNNPOT"UUSJCVUJPO-JDFOTF ໊֤ɾϒϥϯυ໊ɺձ໊ࣾͳͲɺҰൠʹ֤ࣾͷඪ·ͨొඪͰ͢ɻຊࢿྉதͰɺɺɺäΛׂѪ͍ͯ͠·͢ɻ 5IF"OESPJESPCPUJTSFQSPEVDFEPSNPEJpFEGSPNXPSLDSFBUFEBOETIBSFECZ(PPHMFBOEVTFEBDDPSEJOHUPUFSNTEFTDSJCFEJOUIF$SFBUJWF$PNNPOT"UUSJCVUJPO-JDFOTF