Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
広告配信サーバーと広告配信比率最適化問題
Search
Ken Wagatsuma
February 10, 2018
Technology
1
1k
広告配信サーバーと広告配信比率最適化問題
Lightening Talk at
https://techconf.cookpad.com/2018/
Ken Wagatsuma
February 10, 2018
Tweet
Share
More Decks by Ken Wagatsuma
See All by Ken Wagatsuma
Pregel Graph Compute Engines - Supersteps Exampls
kenju
0
230
Kafka on Kubernetes with Strimzi
kenju
0
180
AWS DynamoDB Accelerator (DAX) 101
kenju
2
7.3k
Moden browser introduction
kenju
1
440
Cookpad summer internship 2019 - API
kenju
0
10k
Introduction to Design Patterns
kenju
0
110
GraphQL Asia 2019 "Re-architecture of a decade-old app with BFF/GraphQL"
kenju
0
9.1k
Introduction to TypeScript
kenju
0
750
Introduction to Programmatic Ad
kenju
0
280
Other Decks in Technology
See All in Technology
AIと融ける人間の冒険
pujisi
0
110
形式手法特論:コンパイラの「正しさ」は証明できるか? #burikaigi / BuriKaigi 2026
ytaka23
15
3.8k
ルネサンス開発者を育てる 1on1支援AIエージェント
yusukeshimizu
0
130
Scrum Guide Expansion Pack が示す現代プロダクト開発への補完的視点
sonjin
0
320
あの夜、私たちは「人間」に戻った。 ── 災害ユートピア、贈与、そしてアジャイルの再構築 / 20260108 Hiromitsu Akiba
shift_evolve
PRO
0
370
ハッカソンから社内プロダクトへ AIエージェント ko☆shi 開発で学んだ4つの重要要素
leveragestech
0
540
Cloud WAN MCP Serverから考える新しいネットワーク運用 / 20251228 Masaki Okuda
shift_evolve
PRO
0
130
2025年のデザインシステムとAI 活用を振り返る
leveragestech
0
680
202512_AIoT.pdf
iotcomjpadmin
0
180
re:Invent2025 セッションレポ ~Spec-driven development with Kiro~
nrinetcom
PRO
2
170
田舎で20年スクラム(後編):一個人が企業で長期戦アジャイルに挑む意味
chinmo
1
980
Master Dataグループ紹介資料
sansan33
PRO
1
4.2k
Featured
See All Featured
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
47
7.9k
Deep Space Network (abreviated)
tonyrice
0
33
Fireside Chat
paigeccino
41
3.8k
Into the Great Unknown - MozCon
thekraken
40
2.2k
SEO for Brand Visibility & Recognition
aleyda
0
4.1k
職位にかかわらず全員がリーダーシップを発揮するチーム作り / Building a team where everyone can demonstrate leadership regardless of position
madoxten
54
48k
Thoughts on Productivity
jonyablonski
73
5k
GitHub's CSS Performance
jonrohan
1032
470k
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
4.1k
Designing Experiences People Love
moore
143
24k
How to Get Subject Matter Experts Bought In and Actively Contributing to SEO & PR Initiatives.
livdayseo
0
39
Marketing Yourself as an Engineer | Alaka | Gurzu
gurzu
0
110
Transcript
ࠂ৴αʔόʔͱ ࠂ৴ൺ࠷దԽ ϝσΟΞϓϩμΫτ։ൃ෦ ,FOKV8BHBUTVNB
8IP Kenju Wagatsuma (github.com/kenju) • ϝσΟΞϓϩμΫτ։ൃ෦ • αʔόʔαΠυΤϯδχΞ • ͖ͳͷɿRuby,
ίʔώʔ, ϩδΧϧΫοΩϯά • ݏ͍ͳͷɿ1ϲ݄લʹॻ͍ͨࣗͷίʔυ
ϝσΟΞϓϩμΫτ։ൃ෦ ୲αʔϏεɿ ࠂ৴, storeTV, cookpadTV, OEM, ͦͷଞଟ ࢀߟɿ ։ൃऀϒϩάʰΫοΫύουͷࠂΤϯδχΞԿΛ ͍ͬͯΔͷ͔ʱ
ຊ͍ͨ͜͠ͱɻ ϝσΟΞϓϩμΫτ։ൃ෦Ͱ ͲΜͳϓϩδΣΫτΛ͍ͬͯΔͷ͔ʁ
νʔϜʹೖͬͯϲ݄ޙʹऔΓΜͩϓϩδΣΫτ ΫοΫύουͷࠂ৴αʔόʔʹ͓͚Δ ࠂ৴ൺͷࣗಈ࠷దԽϓϩδΣΫτɻ
ݫ͍͠εέδϡʔϧ • ϝσΟΞϓϩμΫτ։ൃ෦δϣΠϯ - 10݄த० • ͓खฒΈഈݟϓϩδΣΫτ - ~11݄த० •
৴࠷దԽτϥΠΞϧ - 12/4(݄) 10:00 - 12/11(݄) 10:00 ???
ղܾ͍ͨ͠՝ • ʑͷखӡ༻ʹΑΔνϡʔχϯά͕ඞཁ - => ࡞ۀ͕ൃੜ • ӡ༻ऀͷܦݧͱצʹཔͬͨνϡʔχϯά - =>
ҟಈ࣌ಋೖ࣌ͷίετ͕ߴա͗ • ࠷దͳࡏݿൺΛࣗಈͰௐͰ͖ͳ͍ - => ࠂܝग़ͷػձଛࣦ
Ͳ͏ղܾ͢Δ͔ • ࡏݿׂྔͱ࣮͔Β࠷దͳ৴ൺͷิ ਖ਼Λߦ͏ - ΠϯϓϨογϣϯϕʔε͔ΒΫϦοΫϕʔεͷ৴ - ΫϦοΫ༧ଌΛར༻ͨ͠ൺͷࣗಈ࠷దԽ - ϦΞϧλΠϜूܭσʔλΛ׆༻ͨ͠ΞʔΩςΫνϟ
‣ Lambda Architecture ʹ͓͚Δ Speed Layer
l4QFFE-BZFSzPO"84 • Kinesis, DynamoDB, Lambda Λ׆༻ͨ͠ Speed Layer (from Lambda
Architecture) • طଘͷετϦʔϜʹɺΫ ϦοΫܭࢉϨΠϠʔΛ Ճ͚ͨͩ͠ = ઌਓͷݞ ʹΔ
ৄ͍ͪ͜͠Β ࢀߟɿ ʰCookpad Tech Kitchen #9 ʙ1ߦͷϩάͷ͜͏ ଆʙ Λ։࠵͠·ͨ͠ʂʱ
ΫϦοΫ༧ଌ͍͠ʂʂʂ • ޯϒʔεςΟϯάܾఆʢGBDTʣΛ༻͍ͨࠂ͝ͱͷΫϦοΫ༧ଌ - Facebook https://code.facebook.com/posts/975025089299409/evaluating-boosted-decision-trees-for-billions-of-users - SmartNews https://speakerdeck.com/komiya_atsushi/gbdt-niyorukuritukulu-yu-ce-wogao-su-hua-sitai-number-oresikanaito-vol-dot-4 •
ଟόϯσΟοτͷҰछͰ͋ΔMortal Multi-Armed BanditsͷԠ༻ - Voyage Group http://techlog.voyagegroup.com/entry/2015/04/03/114547ɹ • Neural Networkͷ૯߹֨ಆٕʢ͕͢͞Googleʣ - Google http://www.eecs.tufts.edu/~dsculley/papers/ad-click-prediction.pdfɹ • ৴པͱ࣮ͷϩδεςΟοΫճؼʢୠܻ͕͠ԯϨϕϧʣ - Criteo http://olivier.chapelle.cc/pub/ngdstone.pdfɹ
ؒʹ߹Θͳ͍ʂ • τϥΠΞϧͳΜͱͯ͠ʹ࣮ࢪ͍ͨ͠ - վળͷαΠΫϧΛճͨ͢Ί • QCDͰݴ͏ͳΒɺDelivery, QualityΛ༏ઌ - ͳΜͱͯؒ͠ʹ߹Θ͍ͤͨʂ
• ࠷ॳ͔Βᘳͳਫ਼༧ଌ·ͣෆՄೳ - ػցֶशͰղܾ͠ͳͯ͘Α͍͔·ͣߟ͑Δ - ࢀߟɿʰࣄͰ͡ΊΔػցֶशʱ
ҠಈฏۉԞ͕ਂ͍ • SMA (Simple Moving Average) = ۙ N ݸͷॏΈ͚ͷͳ͍୯७ͳฏۉ
• WMA (Weighted Moving Average) = ΑΓ࠷ۙͷσʔλʹॏΈ͚ • EWMA (Exponentially Weighted Moving Average) = ࢦؔతʹॏΈ͚ • MMA (Modified Moving Average) = EWMAͷѥछ ଞʹTriangle MA, Sine Weighted MA, KZ Filtering,...etc ࢀߟɿhttps://en.wikipedia.org/wiki/Moving_average#Simple_moving_averag
աڈϩάΛݩʹΞϧΰϦζϜͷਫ਼Λੳ • Jupyter Notebook / Python - ࢀߟɿ։ൃऀϒϩάʰRailsΤϯ δχΞʹཱͭJupyter Notebook
ͱiRubyʱ • ൺֱͨ͠ΞϧΰϦζϜ - Total Average - Cumulative Average - Simple Moving Average (3 Hours) - Simple Moving Average (6 Hours)
τϥΠΞϧ݁Ռ • ิਖ਼ͷϩδοΫʹ՝ ͕ݟ͔ͭͬͨ ͷɺτϥΠΞϧͱ͠ ͯޭ
ظతνϡʔχϯά • Speed Layer ͷ࠶ઃܭɾຏ͖ࠐΈ - ετϦʔϜॲཧʹԊͬͨσʔλͷྲྀΕ • ෛ࠴ =
ະୡ ΛՃຯͨ͠ϩδοΫ - ୈҰ࣍τϥΠΞϧΛ͍ͬͯͳ͔ͬͨΒݟ͑ͳ͔ͬͨ՝ • ҠಈฏۉΞϧΰϦζϜͷվળ - Batch LayerͰΦϑϥΠϯͰܭࢉ&࠷ਫ਼͕ྑ͍ͷΛબ - Gem࡞ͬͨ https://github.com/kenju/moving_avg-ruby
தظͰ͍͖ͬͯ • ΫϦοΫ༧ଌਫ਼ͷߋͳΔ্ˍ৽نࠂ։ൃ - ػցֶशϨΠϠʔͷຊ൪ಋೖ • Lambda Architectureͷຏ͖ࠐΈ - ࢀߟɿ։ൃऀϒϩάʰαʔόʔϨεͳόοΫΞοϓγεςϜ
Λ AWS SAM Λ༻͍ͯγϡοͱߏங͢Δʱ • ࠂ৴αʔόʔࣗମͷѹతվળ - ։ൃج൫ͷڥඋ - ύϑΥʔϚϯε࠷దԽɺϨΨγʔίʔυͷվળ
ຖͷྉཧΛָ͠Έʹ͢Δ 5IBOLZPV