Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
広告配信サーバーと広告配信比率最適化問題
Search
Ken Wagatsuma
February 10, 2018
Technology
1
1k
広告配信サーバーと広告配信比率最適化問題
Lightening Talk at
https://techconf.cookpad.com/2018/
Ken Wagatsuma
February 10, 2018
Tweet
Share
More Decks by Ken Wagatsuma
See All by Ken Wagatsuma
Pregel Graph Compute Engines - Supersteps Exampls
kenju
0
220
Kafka on Kubernetes with Strimzi
kenju
0
170
AWS DynamoDB Accelerator (DAX) 101
kenju
2
7.2k
Moden browser introduction
kenju
1
420
Cookpad summer internship 2019 - API
kenju
0
10k
Introduction to Design Patterns
kenju
0
93
GraphQL Asia 2019 "Re-architecture of a decade-old app with BFF/GraphQL"
kenju
0
9k
Introduction to TypeScript
kenju
0
740
Introduction to Programmatic Ad
kenju
0
270
Other Decks in Technology
See All in Technology
仕様駆動開発を実現する上流工程におけるAIエージェント活用
sergicalsix
10
5.1k
ViteとTypeScriptのProject Referencesで 大規模モノレポのUIカタログのリリースサイクルを高速化する
shuta13
3
240
【SORACOM UG Explorer 2025】さらなる10年へ ~ SORACOM MVC 発表
soracom
PRO
0
200
次世代のメールプロトコルの斜め読み
hirachan
2
210
InsightX 会社説明資料/ Company deck
insightx
0
150
AIでデータ活用を加速させる取り組み / Leveraging AI to accelerate data utilization
okiyuki99
6
1.6k
어떤 개발자가 되고 싶은가?
arawn
1
370
JAWS UG AI/ML #32 Amazon BedrockモデルのライフサイクルとEOL対応/How Amazon Bedrock Model Lifecycle Works
quiver
1
540
東京大学「Agile-X」のFPGA AIデザインハッカソンを制したソニーのAI最適化
sony
0
180
AWS DMS で SQL Server を移行してみた/aws-dms-sql-server-migration
emiki
0
270
Oracle Database@Google Cloud:サービス概要のご紹介
oracle4engineer
PRO
0
410
ざっくり学ぶ 『エンジニアリングリーダー 技術組織を育てるリーダーシップと セルフマネジメント』 / 50 minute Engineering Leader
iwashi86
8
4k
Featured
See All Featured
Large-scale JavaScript Application Architecture
addyosmani
514
110k
The Cost Of JavaScript in 2023
addyosmani
55
9.1k
A designer walks into a library…
pauljervisheath
209
24k
What's in a price? How to price your products and services
michaelherold
246
12k
Measuring & Analyzing Core Web Vitals
bluesmoon
9
650
Principles of Awesome APIs and How to Build Them.
keavy
127
17k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
46
2.5k
Stop Working from a Prison Cell
hatefulcrawdad
272
21k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
230
22k
StorybookのUI Testing Handbookを読んだ
zakiyama
31
6.3k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
37
2.6k
4 Signs Your Business is Dying
shpigford
186
22k
Transcript
ࠂ৴αʔόʔͱ ࠂ৴ൺ࠷దԽ ϝσΟΞϓϩμΫτ։ൃ෦ ,FOKV8BHBUTVNB
8IP Kenju Wagatsuma (github.com/kenju) • ϝσΟΞϓϩμΫτ։ൃ෦ • αʔόʔαΠυΤϯδχΞ • ͖ͳͷɿRuby,
ίʔώʔ, ϩδΧϧΫοΩϯά • ݏ͍ͳͷɿ1ϲ݄લʹॻ͍ͨࣗͷίʔυ
ϝσΟΞϓϩμΫτ։ൃ෦ ୲αʔϏεɿ ࠂ৴, storeTV, cookpadTV, OEM, ͦͷଞଟ ࢀߟɿ ։ൃऀϒϩάʰΫοΫύουͷࠂΤϯδχΞԿΛ ͍ͬͯΔͷ͔ʱ
ຊ͍ͨ͜͠ͱɻ ϝσΟΞϓϩμΫτ։ൃ෦Ͱ ͲΜͳϓϩδΣΫτΛ͍ͬͯΔͷ͔ʁ
νʔϜʹೖͬͯϲ݄ޙʹऔΓΜͩϓϩδΣΫτ ΫοΫύουͷࠂ৴αʔόʔʹ͓͚Δ ࠂ৴ൺͷࣗಈ࠷దԽϓϩδΣΫτɻ
ݫ͍͠εέδϡʔϧ • ϝσΟΞϓϩμΫτ։ൃ෦δϣΠϯ - 10݄த० • ͓खฒΈഈݟϓϩδΣΫτ - ~11݄த० •
৴࠷దԽτϥΠΞϧ - 12/4(݄) 10:00 - 12/11(݄) 10:00 ???
ղܾ͍ͨ͠՝ • ʑͷखӡ༻ʹΑΔνϡʔχϯά͕ඞཁ - => ࡞ۀ͕ൃੜ • ӡ༻ऀͷܦݧͱצʹཔͬͨνϡʔχϯά - =>
ҟಈ࣌ಋೖ࣌ͷίετ͕ߴա͗ • ࠷దͳࡏݿൺΛࣗಈͰௐͰ͖ͳ͍ - => ࠂܝग़ͷػձଛࣦ
Ͳ͏ղܾ͢Δ͔ • ࡏݿׂྔͱ࣮͔Β࠷దͳ৴ൺͷิ ਖ਼Λߦ͏ - ΠϯϓϨογϣϯϕʔε͔ΒΫϦοΫϕʔεͷ৴ - ΫϦοΫ༧ଌΛར༻ͨ͠ൺͷࣗಈ࠷దԽ - ϦΞϧλΠϜूܭσʔλΛ׆༻ͨ͠ΞʔΩςΫνϟ
‣ Lambda Architecture ʹ͓͚Δ Speed Layer
l4QFFE-BZFSzPO"84 • Kinesis, DynamoDB, Lambda Λ׆༻ͨ͠ Speed Layer (from Lambda
Architecture) • طଘͷετϦʔϜʹɺΫ ϦοΫܭࢉϨΠϠʔΛ Ճ͚ͨͩ͠ = ઌਓͷݞ ʹΔ
ৄ͍ͪ͜͠Β ࢀߟɿ ʰCookpad Tech Kitchen #9 ʙ1ߦͷϩάͷ͜͏ ଆʙ Λ։࠵͠·ͨ͠ʂʱ
ΫϦοΫ༧ଌ͍͠ʂʂʂ • ޯϒʔεςΟϯάܾఆʢGBDTʣΛ༻͍ͨࠂ͝ͱͷΫϦοΫ༧ଌ - Facebook https://code.facebook.com/posts/975025089299409/evaluating-boosted-decision-trees-for-billions-of-users - SmartNews https://speakerdeck.com/komiya_atsushi/gbdt-niyorukuritukulu-yu-ce-wogao-su-hua-sitai-number-oresikanaito-vol-dot-4 •
ଟόϯσΟοτͷҰछͰ͋ΔMortal Multi-Armed BanditsͷԠ༻ - Voyage Group http://techlog.voyagegroup.com/entry/2015/04/03/114547ɹ • Neural Networkͷ૯߹֨ಆٕʢ͕͢͞Googleʣ - Google http://www.eecs.tufts.edu/~dsculley/papers/ad-click-prediction.pdfɹ • ৴པͱ࣮ͷϩδεςΟοΫճؼʢୠܻ͕͠ԯϨϕϧʣ - Criteo http://olivier.chapelle.cc/pub/ngdstone.pdfɹ
ؒʹ߹Θͳ͍ʂ • τϥΠΞϧͳΜͱͯ͠ʹ࣮ࢪ͍ͨ͠ - վળͷαΠΫϧΛճͨ͢Ί • QCDͰݴ͏ͳΒɺDelivery, QualityΛ༏ઌ - ͳΜͱͯؒ͠ʹ߹Θ͍ͤͨʂ
• ࠷ॳ͔Βᘳͳਫ਼༧ଌ·ͣෆՄೳ - ػցֶशͰղܾ͠ͳͯ͘Α͍͔·ͣߟ͑Δ - ࢀߟɿʰࣄͰ͡ΊΔػցֶशʱ
ҠಈฏۉԞ͕ਂ͍ • SMA (Simple Moving Average) = ۙ N ݸͷॏΈ͚ͷͳ͍୯७ͳฏۉ
• WMA (Weighted Moving Average) = ΑΓ࠷ۙͷσʔλʹॏΈ͚ • EWMA (Exponentially Weighted Moving Average) = ࢦؔతʹॏΈ͚ • MMA (Modified Moving Average) = EWMAͷѥछ ଞʹTriangle MA, Sine Weighted MA, KZ Filtering,...etc ࢀߟɿhttps://en.wikipedia.org/wiki/Moving_average#Simple_moving_averag
աڈϩάΛݩʹΞϧΰϦζϜͷਫ਼Λੳ • Jupyter Notebook / Python - ࢀߟɿ։ൃऀϒϩάʰRailsΤϯ δχΞʹཱͭJupyter Notebook
ͱiRubyʱ • ൺֱͨ͠ΞϧΰϦζϜ - Total Average - Cumulative Average - Simple Moving Average (3 Hours) - Simple Moving Average (6 Hours)
τϥΠΞϧ݁Ռ • ิਖ਼ͷϩδοΫʹ՝ ͕ݟ͔ͭͬͨ ͷɺτϥΠΞϧͱ͠ ͯޭ
ظతνϡʔχϯά • Speed Layer ͷ࠶ઃܭɾຏ͖ࠐΈ - ετϦʔϜॲཧʹԊͬͨσʔλͷྲྀΕ • ෛ࠴ =
ະୡ ΛՃຯͨ͠ϩδοΫ - ୈҰ࣍τϥΠΞϧΛ͍ͬͯͳ͔ͬͨΒݟ͑ͳ͔ͬͨ՝ • ҠಈฏۉΞϧΰϦζϜͷվળ - Batch LayerͰΦϑϥΠϯͰܭࢉ&࠷ਫ਼͕ྑ͍ͷΛબ - Gem࡞ͬͨ https://github.com/kenju/moving_avg-ruby
தظͰ͍͖ͬͯ • ΫϦοΫ༧ଌਫ਼ͷߋͳΔ্ˍ৽نࠂ։ൃ - ػցֶशϨΠϠʔͷຊ൪ಋೖ • Lambda Architectureͷຏ͖ࠐΈ - ࢀߟɿ։ൃऀϒϩάʰαʔόʔϨεͳόοΫΞοϓγεςϜ
Λ AWS SAM Λ༻͍ͯγϡοͱߏங͢Δʱ • ࠂ৴αʔόʔࣗମͷѹతվળ - ։ൃج൫ͷڥඋ - ύϑΥʔϚϯε࠷దԽɺϨΨγʔίʔυͷվળ
ຖͷྉཧΛָ͠Έʹ͢Δ 5IBOLZPV