Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
広告配信サーバーと広告配信比率最適化問題
Search
Ken Wagatsuma
February 10, 2018
Technology
1
1k
広告配信サーバーと広告配信比率最適化問題
Lightening Talk at
https://techconf.cookpad.com/2018/
Ken Wagatsuma
February 10, 2018
Tweet
Share
More Decks by Ken Wagatsuma
See All by Ken Wagatsuma
Pregel Graph Compute Engines - Supersteps Exampls
kenju
0
220
Kafka on Kubernetes with Strimzi
kenju
0
170
AWS DynamoDB Accelerator (DAX) 101
kenju
2
7.2k
Moden browser introduction
kenju
1
420
Cookpad summer internship 2019 - API
kenju
0
10k
Introduction to Design Patterns
kenju
0
88
GraphQL Asia 2019 "Re-architecture of a decade-old app with BFF/GraphQL"
kenju
0
9k
Introduction to TypeScript
kenju
0
740
Introduction to Programmatic Ad
kenju
0
260
Other Decks in Technology
See All in Technology
アイテムレビュー機能導入からの学びと改善
zozotech
PRO
0
160
ビズリーチ求職者検索におけるPLMとLLMの活用 / Search Engineering MEET UP_2-1
visional_engineering_and_design
1
130
Git in Team
kawaguti
PRO
3
370
データ戦略部門 紹介資料
sansan33
PRO
1
3.7k
BI ツールはもういらない?Amazon RedShift & MCP Server で試みる新しいデータ分析アプローチ
cdataj
0
160
フレームワークを意識させないワークショップづくり
keigosuda
0
190
エンタメとAIのための3Dパラレルワールド構築(GPU UNITE 2025 特別講演)
pfn
PRO
0
330
業務効率化をさらに加速させる、ノーコードツールとStep Functionsのハイブリッド化
smt7174
2
140
大規模サーバーレスAPIの堅牢性・信頼性設計 〜AWSのベストプラクティスから始まる現実的制約との向き合い方〜
maimyyym
10
4.7k
やる気のない自分との向き合い方/How to Deal with Your Unmotivated Self
sanogemaru
0
510
E2Eテスト設計_自動化のリアル___Playwrightでの実践とMCPの試み__AIによるテスト観点作成_.pdf
findy_eventslides
2
620
防災デジタル分野での官民共創の取り組み (2)DIT/CCとD-CERTについて
ditccsugii
0
300
Featured
See All Featured
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
230
22k
Git: the NoSQL Database
bkeepers
PRO
431
66k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
189
55k
Reflections from 52 weeks, 52 projects
jeffersonlam
353
21k
Building an army of robots
kneath
306
46k
Why You Should Never Use an ORM
jnunemaker
PRO
59
9.6k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
31
9.7k
Agile that works and the tools we love
rasmusluckow
331
21k
A Tale of Four Properties
chriscoyier
161
23k
Code Review Best Practice
trishagee
72
19k
Stop Working from a Prison Cell
hatefulcrawdad
271
21k
Side Projects
sachag
455
43k
Transcript
ࠂ৴αʔόʔͱ ࠂ৴ൺ࠷దԽ ϝσΟΞϓϩμΫτ։ൃ෦ ,FOKV8BHBUTVNB
8IP Kenju Wagatsuma (github.com/kenju) • ϝσΟΞϓϩμΫτ։ൃ෦ • αʔόʔαΠυΤϯδχΞ • ͖ͳͷɿRuby,
ίʔώʔ, ϩδΧϧΫοΩϯά • ݏ͍ͳͷɿ1ϲ݄લʹॻ͍ͨࣗͷίʔυ
ϝσΟΞϓϩμΫτ։ൃ෦ ୲αʔϏεɿ ࠂ৴, storeTV, cookpadTV, OEM, ͦͷଞଟ ࢀߟɿ ։ൃऀϒϩάʰΫοΫύουͷࠂΤϯδχΞԿΛ ͍ͬͯΔͷ͔ʱ
ຊ͍ͨ͜͠ͱɻ ϝσΟΞϓϩμΫτ։ൃ෦Ͱ ͲΜͳϓϩδΣΫτΛ͍ͬͯΔͷ͔ʁ
νʔϜʹೖͬͯϲ݄ޙʹऔΓΜͩϓϩδΣΫτ ΫοΫύουͷࠂ৴αʔόʔʹ͓͚Δ ࠂ৴ൺͷࣗಈ࠷దԽϓϩδΣΫτɻ
ݫ͍͠εέδϡʔϧ • ϝσΟΞϓϩμΫτ։ൃ෦δϣΠϯ - 10݄த० • ͓खฒΈഈݟϓϩδΣΫτ - ~11݄த० •
৴࠷దԽτϥΠΞϧ - 12/4(݄) 10:00 - 12/11(݄) 10:00 ???
ղܾ͍ͨ͠՝ • ʑͷखӡ༻ʹΑΔνϡʔχϯά͕ඞཁ - => ࡞ۀ͕ൃੜ • ӡ༻ऀͷܦݧͱצʹཔͬͨνϡʔχϯά - =>
ҟಈ࣌ಋೖ࣌ͷίετ͕ߴա͗ • ࠷దͳࡏݿൺΛࣗಈͰௐͰ͖ͳ͍ - => ࠂܝग़ͷػձଛࣦ
Ͳ͏ղܾ͢Δ͔ • ࡏݿׂྔͱ࣮͔Β࠷దͳ৴ൺͷิ ਖ਼Λߦ͏ - ΠϯϓϨογϣϯϕʔε͔ΒΫϦοΫϕʔεͷ৴ - ΫϦοΫ༧ଌΛར༻ͨ͠ൺͷࣗಈ࠷దԽ - ϦΞϧλΠϜूܭσʔλΛ׆༻ͨ͠ΞʔΩςΫνϟ
‣ Lambda Architecture ʹ͓͚Δ Speed Layer
l4QFFE-BZFSzPO"84 • Kinesis, DynamoDB, Lambda Λ׆༻ͨ͠ Speed Layer (from Lambda
Architecture) • طଘͷετϦʔϜʹɺΫ ϦοΫܭࢉϨΠϠʔΛ Ճ͚ͨͩ͠ = ઌਓͷݞ ʹΔ
ৄ͍ͪ͜͠Β ࢀߟɿ ʰCookpad Tech Kitchen #9 ʙ1ߦͷϩάͷ͜͏ ଆʙ Λ։࠵͠·ͨ͠ʂʱ
ΫϦοΫ༧ଌ͍͠ʂʂʂ • ޯϒʔεςΟϯάܾఆʢGBDTʣΛ༻͍ͨࠂ͝ͱͷΫϦοΫ༧ଌ - Facebook https://code.facebook.com/posts/975025089299409/evaluating-boosted-decision-trees-for-billions-of-users - SmartNews https://speakerdeck.com/komiya_atsushi/gbdt-niyorukuritukulu-yu-ce-wogao-su-hua-sitai-number-oresikanaito-vol-dot-4 •
ଟόϯσΟοτͷҰछͰ͋ΔMortal Multi-Armed BanditsͷԠ༻ - Voyage Group http://techlog.voyagegroup.com/entry/2015/04/03/114547ɹ • Neural Networkͷ૯߹֨ಆٕʢ͕͢͞Googleʣ - Google http://www.eecs.tufts.edu/~dsculley/papers/ad-click-prediction.pdfɹ • ৴པͱ࣮ͷϩδεςΟοΫճؼʢୠܻ͕͠ԯϨϕϧʣ - Criteo http://olivier.chapelle.cc/pub/ngdstone.pdfɹ
ؒʹ߹Θͳ͍ʂ • τϥΠΞϧͳΜͱͯ͠ʹ࣮ࢪ͍ͨ͠ - վળͷαΠΫϧΛճͨ͢Ί • QCDͰݴ͏ͳΒɺDelivery, QualityΛ༏ઌ - ͳΜͱͯؒ͠ʹ߹Θ͍ͤͨʂ
• ࠷ॳ͔Βᘳͳਫ਼༧ଌ·ͣෆՄೳ - ػցֶशͰղܾ͠ͳͯ͘Α͍͔·ͣߟ͑Δ - ࢀߟɿʰࣄͰ͡ΊΔػցֶशʱ
ҠಈฏۉԞ͕ਂ͍ • SMA (Simple Moving Average) = ۙ N ݸͷॏΈ͚ͷͳ͍୯७ͳฏۉ
• WMA (Weighted Moving Average) = ΑΓ࠷ۙͷσʔλʹॏΈ͚ • EWMA (Exponentially Weighted Moving Average) = ࢦؔతʹॏΈ͚ • MMA (Modified Moving Average) = EWMAͷѥछ ଞʹTriangle MA, Sine Weighted MA, KZ Filtering,...etc ࢀߟɿhttps://en.wikipedia.org/wiki/Moving_average#Simple_moving_averag
աڈϩάΛݩʹΞϧΰϦζϜͷਫ਼Λੳ • Jupyter Notebook / Python - ࢀߟɿ։ൃऀϒϩάʰRailsΤϯ δχΞʹཱͭJupyter Notebook
ͱiRubyʱ • ൺֱͨ͠ΞϧΰϦζϜ - Total Average - Cumulative Average - Simple Moving Average (3 Hours) - Simple Moving Average (6 Hours)
τϥΠΞϧ݁Ռ • ิਖ਼ͷϩδοΫʹ՝ ͕ݟ͔ͭͬͨ ͷɺτϥΠΞϧͱ͠ ͯޭ
ظతνϡʔχϯά • Speed Layer ͷ࠶ઃܭɾຏ͖ࠐΈ - ετϦʔϜॲཧʹԊͬͨσʔλͷྲྀΕ • ෛ࠴ =
ະୡ ΛՃຯͨ͠ϩδοΫ - ୈҰ࣍τϥΠΞϧΛ͍ͬͯͳ͔ͬͨΒݟ͑ͳ͔ͬͨ՝ • ҠಈฏۉΞϧΰϦζϜͷվળ - Batch LayerͰΦϑϥΠϯͰܭࢉ&࠷ਫ਼͕ྑ͍ͷΛબ - Gem࡞ͬͨ https://github.com/kenju/moving_avg-ruby
தظͰ͍͖ͬͯ • ΫϦοΫ༧ଌਫ਼ͷߋͳΔ্ˍ৽نࠂ։ൃ - ػցֶशϨΠϠʔͷຊ൪ಋೖ • Lambda Architectureͷຏ͖ࠐΈ - ࢀߟɿ։ൃऀϒϩάʰαʔόʔϨεͳόοΫΞοϓγεςϜ
Λ AWS SAM Λ༻͍ͯγϡοͱߏங͢Δʱ • ࠂ৴αʔόʔࣗମͷѹతվળ - ։ൃج൫ͷڥඋ - ύϑΥʔϚϯε࠷దԽɺϨΨγʔίʔυͷվળ
ຖͷྉཧΛָ͠Έʹ͢Δ 5IBOLZPV