Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
広告配信サーバーと広告配信比率最適化問題
Search
Ken Wagatsuma
February 10, 2018
Technology
1
990
広告配信サーバーと広告配信比率最適化問題
Lightening Talk at
https://techconf.cookpad.com/2018/
Ken Wagatsuma
February 10, 2018
Tweet
Share
More Decks by Ken Wagatsuma
See All by Ken Wagatsuma
Pregel Graph Compute Engines - Supersteps Exampls
kenju
0
210
Kafka on Kubernetes with Strimzi
kenju
0
160
AWS DynamoDB Accelerator (DAX) 101
kenju
2
7.2k
Moden browser introduction
kenju
1
410
Cookpad summer internship 2019 - API
kenju
0
10k
Introduction to Design Patterns
kenju
0
84
GraphQL Asia 2019 "Re-architecture of a decade-old app with BFF/GraphQL"
kenju
0
9k
Introduction to TypeScript
kenju
0
730
Introduction to Programmatic Ad
kenju
0
260
Other Decks in Technology
See All in Technology
絶対に失敗できないキャンペーンページの高速かつ安全な開発、WINTICKET × microCMS の開発事例
microcms
0
310
カミナシ社の『ID管理基盤』製品内製 - その意思決定背景と2年間の進化 #AWSUnicornDay / Kaminashi ID - The Big Whys
kaminashi
3
640
【 LLMエンジニアがヒューマノイド開発に挑んでみた 】 - 第104回 Machine Learning 15minutes! Hybrid
soneo1127
0
210
努力家なスクラムマスターが陥る「傍観者」という罠と乗り越えた先に信頼があった話 / 20250830 Takahiro Sasaki
shift_evolve
PRO
2
120
AIエージェント就活入門 - MCPが履歴書になる未来
eltociear
0
670
人と組織に偏重したEMへのアンチテーゼ──なぜ、EMに設計力が必要なのか/An antithesis to the overemphasis of people and organizations in EM
dskst
7
790
AIとTDDによるNext.js「隙間ツール」開発の実践
makotot
6
790
AI時代にPdMとPMMはどう連携すべきか / PdM–PMM-collaboration-in-AI-era
rakus_dev
0
160
まだ間に合う! StrandsとBedrock AgentCoreでAIエージェント構築に入門しよう
minorun365
PRO
10
550
Microsoft Fabric のネットワーク保護のアップデートについて
ryomaru0825
1
120
Kiroと学ぶコンテキストエンジニアリング
oikon48
4
790
Goss: New Production-Ready Go Binding for Faiss #coefl_go_jp
bengo4com
1
1.1k
Featured
See All Featured
Practical Orchestrator
shlominoach
190
11k
Building a Modern Day E-commerce SEO Strategy
aleyda
43
7.5k
The World Runs on Bad Software
bkeepers
PRO
70
11k
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.4k
Writing Fast Ruby
sferik
628
62k
A Tale of Four Properties
chriscoyier
160
23k
GitHub's CSS Performance
jonrohan
1032
460k
Keith and Marios Guide to Fast Websites
keithpitt
411
22k
Why You Should Never Use an ORM
jnunemaker
PRO
59
9.5k
How To Stay Up To Date on Web Technology
chriscoyier
790
250k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
656
61k
Docker and Python
trallard
45
3.5k
Transcript
ࠂ৴αʔόʔͱ ࠂ৴ൺ࠷దԽ ϝσΟΞϓϩμΫτ։ൃ෦ ,FOKV8BHBUTVNB
8IP Kenju Wagatsuma (github.com/kenju) • ϝσΟΞϓϩμΫτ։ൃ෦ • αʔόʔαΠυΤϯδχΞ • ͖ͳͷɿRuby,
ίʔώʔ, ϩδΧϧΫοΩϯά • ݏ͍ͳͷɿ1ϲ݄લʹॻ͍ͨࣗͷίʔυ
ϝσΟΞϓϩμΫτ։ൃ෦ ୲αʔϏεɿ ࠂ৴, storeTV, cookpadTV, OEM, ͦͷଞଟ ࢀߟɿ ։ൃऀϒϩάʰΫοΫύουͷࠂΤϯδχΞԿΛ ͍ͬͯΔͷ͔ʱ
ຊ͍ͨ͜͠ͱɻ ϝσΟΞϓϩμΫτ։ൃ෦Ͱ ͲΜͳϓϩδΣΫτΛ͍ͬͯΔͷ͔ʁ
νʔϜʹೖͬͯϲ݄ޙʹऔΓΜͩϓϩδΣΫτ ΫοΫύουͷࠂ৴αʔόʔʹ͓͚Δ ࠂ৴ൺͷࣗಈ࠷దԽϓϩδΣΫτɻ
ݫ͍͠εέδϡʔϧ • ϝσΟΞϓϩμΫτ։ൃ෦δϣΠϯ - 10݄த० • ͓खฒΈഈݟϓϩδΣΫτ - ~11݄த० •
৴࠷దԽτϥΠΞϧ - 12/4(݄) 10:00 - 12/11(݄) 10:00 ???
ղܾ͍ͨ͠՝ • ʑͷखӡ༻ʹΑΔνϡʔχϯά͕ඞཁ - => ࡞ۀ͕ൃੜ • ӡ༻ऀͷܦݧͱצʹཔͬͨνϡʔχϯά - =>
ҟಈ࣌ಋೖ࣌ͷίετ͕ߴա͗ • ࠷దͳࡏݿൺΛࣗಈͰௐͰ͖ͳ͍ - => ࠂܝग़ͷػձଛࣦ
Ͳ͏ղܾ͢Δ͔ • ࡏݿׂྔͱ࣮͔Β࠷దͳ৴ൺͷิ ਖ਼Λߦ͏ - ΠϯϓϨογϣϯϕʔε͔ΒΫϦοΫϕʔεͷ৴ - ΫϦοΫ༧ଌΛར༻ͨ͠ൺͷࣗಈ࠷దԽ - ϦΞϧλΠϜूܭσʔλΛ׆༻ͨ͠ΞʔΩςΫνϟ
‣ Lambda Architecture ʹ͓͚Δ Speed Layer
l4QFFE-BZFSzPO"84 • Kinesis, DynamoDB, Lambda Λ׆༻ͨ͠ Speed Layer (from Lambda
Architecture) • طଘͷετϦʔϜʹɺΫ ϦοΫܭࢉϨΠϠʔΛ Ճ͚ͨͩ͠ = ઌਓͷݞ ʹΔ
ৄ͍ͪ͜͠Β ࢀߟɿ ʰCookpad Tech Kitchen #9 ʙ1ߦͷϩάͷ͜͏ ଆʙ Λ։࠵͠·ͨ͠ʂʱ
ΫϦοΫ༧ଌ͍͠ʂʂʂ • ޯϒʔεςΟϯάܾఆʢGBDTʣΛ༻͍ͨࠂ͝ͱͷΫϦοΫ༧ଌ - Facebook https://code.facebook.com/posts/975025089299409/evaluating-boosted-decision-trees-for-billions-of-users - SmartNews https://speakerdeck.com/komiya_atsushi/gbdt-niyorukuritukulu-yu-ce-wogao-su-hua-sitai-number-oresikanaito-vol-dot-4 •
ଟόϯσΟοτͷҰछͰ͋ΔMortal Multi-Armed BanditsͷԠ༻ - Voyage Group http://techlog.voyagegroup.com/entry/2015/04/03/114547ɹ • Neural Networkͷ૯߹֨ಆٕʢ͕͢͞Googleʣ - Google http://www.eecs.tufts.edu/~dsculley/papers/ad-click-prediction.pdfɹ • ৴པͱ࣮ͷϩδεςΟοΫճؼʢୠܻ͕͠ԯϨϕϧʣ - Criteo http://olivier.chapelle.cc/pub/ngdstone.pdfɹ
ؒʹ߹Θͳ͍ʂ • τϥΠΞϧͳΜͱͯ͠ʹ࣮ࢪ͍ͨ͠ - վળͷαΠΫϧΛճͨ͢Ί • QCDͰݴ͏ͳΒɺDelivery, QualityΛ༏ઌ - ͳΜͱͯؒ͠ʹ߹Θ͍ͤͨʂ
• ࠷ॳ͔Βᘳͳਫ਼༧ଌ·ͣෆՄೳ - ػցֶशͰղܾ͠ͳͯ͘Α͍͔·ͣߟ͑Δ - ࢀߟɿʰࣄͰ͡ΊΔػցֶशʱ
ҠಈฏۉԞ͕ਂ͍ • SMA (Simple Moving Average) = ۙ N ݸͷॏΈ͚ͷͳ͍୯७ͳฏۉ
• WMA (Weighted Moving Average) = ΑΓ࠷ۙͷσʔλʹॏΈ͚ • EWMA (Exponentially Weighted Moving Average) = ࢦؔతʹॏΈ͚ • MMA (Modified Moving Average) = EWMAͷѥछ ଞʹTriangle MA, Sine Weighted MA, KZ Filtering,...etc ࢀߟɿhttps://en.wikipedia.org/wiki/Moving_average#Simple_moving_averag
աڈϩάΛݩʹΞϧΰϦζϜͷਫ਼Λੳ • Jupyter Notebook / Python - ࢀߟɿ։ൃऀϒϩάʰRailsΤϯ δχΞʹཱͭJupyter Notebook
ͱiRubyʱ • ൺֱͨ͠ΞϧΰϦζϜ - Total Average - Cumulative Average - Simple Moving Average (3 Hours) - Simple Moving Average (6 Hours)
τϥΠΞϧ݁Ռ • ิਖ਼ͷϩδοΫʹ՝ ͕ݟ͔ͭͬͨ ͷɺτϥΠΞϧͱ͠ ͯޭ
ظతνϡʔχϯά • Speed Layer ͷ࠶ઃܭɾຏ͖ࠐΈ - ετϦʔϜॲཧʹԊͬͨσʔλͷྲྀΕ • ෛ࠴ =
ະୡ ΛՃຯͨ͠ϩδοΫ - ୈҰ࣍τϥΠΞϧΛ͍ͬͯͳ͔ͬͨΒݟ͑ͳ͔ͬͨ՝ • ҠಈฏۉΞϧΰϦζϜͷվળ - Batch LayerͰΦϑϥΠϯͰܭࢉ&࠷ਫ਼͕ྑ͍ͷΛબ - Gem࡞ͬͨ https://github.com/kenju/moving_avg-ruby
தظͰ͍͖ͬͯ • ΫϦοΫ༧ଌਫ਼ͷߋͳΔ্ˍ৽نࠂ։ൃ - ػցֶशϨΠϠʔͷຊ൪ಋೖ • Lambda Architectureͷຏ͖ࠐΈ - ࢀߟɿ։ൃऀϒϩάʰαʔόʔϨεͳόοΫΞοϓγεςϜ
Λ AWS SAM Λ༻͍ͯγϡοͱߏங͢Δʱ • ࠂ৴αʔόʔࣗମͷѹతվળ - ։ൃج൫ͷڥඋ - ύϑΥʔϚϯε࠷దԽɺϨΨγʔίʔυͷվળ
ຖͷྉཧΛָ͠Έʹ͢Δ 5IBOLZPV