Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
第85回Tokyo.R初心者セッション:データ可視化
Search
kilometer
May 23, 2020
Technology
0
620
第85回Tokyo.R初心者セッション:データ可視化
第85回Tokyo.R初心者セッションのトークスライドです。
kilometer
May 23, 2020
Tweet
Share
More Decks by kilometer
See All by kilometer
TokyoR#111_ANOVA
kilometer
2
940
TokyoR109.pdf
kilometer
1
520
TokyoR#108_NestedDataHandling
kilometer
0
890
TokyoR#107_R_GeoData
kilometer
0
490
SappoRo.R_roundrobin
kilometer
0
170
TokyoR#104_DataProcessing
kilometer
1
740
TokyoR#103_DataProcessing
kilometer
0
960
TokyoR#102_RMarkdown
kilometer
1
700
TokyoR#101_RegressionAnalysis
kilometer
0
530
Other Decks in Technology
See All in Technology
_第4回__AIxIoTビジネス共創ラボ紹介資料_20251203.pdf
iotcomjpadmin
0
180
2025-12-27 Claude CodeでPRレビュー対応を効率化する@機械学習社会実装勉強会第54回
nakamasato
4
1.4k
投資戦略を量産せよ 2 - マケデコセミナー(2025/12/26)
gamella
1
630
AI with TiDD
shiraji
1
350
Oracle Database@Google Cloud:サービス概要のご紹介
oracle4engineer
PRO
1
850
スクラムマスターが スクラムチームに入って取り組む5つのこと - スクラムガイドには書いてないけど入った当初から取り組んでおきたい大切なこと -
scrummasudar
1
1.8k
『君の名は』と聞く君の名は。 / Your name, you who asks for mine.
nttcom
1
150
Master Dataグループ紹介資料
sansan33
PRO
1
4.2k
AWS re:Inventre:cap ~AmazonNova 2 Omniのワークショップを体験してきた~
nrinetcom
PRO
0
130
AI: The stuff that nobody shows you
jnunemaker
PRO
1
160
モノタロウ x クリエーションラインで実現する チームトポロジーにおける プラットフォームチーム・ ストリームアラインドチームの 効果的なコラボレーション
creationline
0
610
「駆動」って言葉、なんかカッコイイ_Mitz
comucal
PRO
0
140
Featured
See All Featured
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
9
1.1k
Jamie Indigo - Trashchat’s Guide to Black Boxes: Technical SEO Tactics for LLMs
techseoconnect
PRO
0
38
Leadership Guide Workshop - DevTernity 2021
reverentgeek
1
180
Leo the Paperboy
mayatellez
1
1.3k
Marketing Yourself as an Engineer | Alaka | Gurzu
gurzu
0
110
Principles of Awesome APIs and How to Build Them.
keavy
127
17k
How to Think Like a Performance Engineer
csswizardry
28
2.4k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
35
2.3k
Applied NLP in the Age of Generative AI
inesmontani
PRO
3
2k
How to make the Groovebox
asonas
2
1.9k
Winning Ecommerce Organic Search in an AI Era - #searchnstuff2025
aleyda
0
1.8k
How To Stay Up To Date on Web Technology
chriscoyier
791
250k
Transcript
BeginneR Session #85 Tokyo.R 2020.05.23 online @kilometer00 - Data visualization
-
Who!? 誰だ?
Who!? 名前: 三村 @kilometer 職業: ポスドク (こうがくはくし) 専⾨: ⾏動神経科学(霊⻑類) 脳イメージング
医療システム⼯学 R歴: ~ 10年ぐらい 流⾏: Craft beer
BeginneR Session - Data visualization -
Wide Long Nested input output pivot_longer pivot_wider group_nest unnest ggplot
visualization map output ggsave
Wide Long Nested input output pivot_longer pivot_wider group_nest unnest ggplot
visualization map output ggsave
٬ظ٭ذ⺎釱כַֹ◄ ٬HHQMPUס㓹灄
ظ٭ذ 䗯㕔 㲔㏇ 鈝峮ס僗扛מ 㰆㏇יַסאסס 㲔㏇瑞⺘ג辐霄 瑞⺘ 鈝㴔 鈝峮 湳釶
ظ٭ذ 䗯㕔 㲔㏇ 鈝峮ס僗扛מ 㰆㏇יַסאסס 㲔㏇瑞⺘ג辐霄 䗯㕔סֹה䙫䓙⚥鷼٬ 鉮ꃿ٬⭚杼מ鸵ג ⫋⮵榫⺎耆םס 瑞⺘
鈝㴔 鈝峮 湳釶
&ODPEF "QQMF 3FBM "QQMF *OGPSNBUJPO %FDPEF
%JWFSHFODF 3FBM *OGP %BUB "QQMF &ODPEJOH
-PTT͛ Symbol grounding problem %JWFSHFODF 3FBM *OGP %BUB "QQMF &ODPEJOH
"QQMF &ODPEF 'SVJU 3FE JNBHF 3FBM *OGPSNBUJPO
"QQMF &ODPEF 'SVJU 3FE JNBHF 3FBM *OGPSNBUJPO DIBOOFM
䗯㕔 㲔㏇ ♞鐄 ظ٭ذ زٔؾٜכ瑞⺘ס鹟䥃 瑞⺘
䗯㕔 㲔㏇ ♞鐄 ظ٭ذ ظ٭ذ ظ٭ذ 鉮ꃿ ⫝⥼ ⫝⥼
䗯㕔 㲔㏇ ♞鐄 ظ٭ذ ظ٭ذ ظ٭ذ 鉮ꃿ ⫝⥼
䗯㕔 㲔㏇ ♞鐄 ظ٭ذ ظ٭ذ 鉮ꃿ 鐐갭 䙫䓙婊㲊
⫝⥼ (mapping) !: # → % # % ֵ䗯㕔ס⺬ס釐碛յ⮯ס䗯㕔ס⺬ס גדחס釐碛מ㵚䑴טׄوٞجت
⫝⥼ (mapping) ! " #: % → ' % '
# ! = " ꞊丗 ⊂ ⫝⥼
! " #$ %$ #& %& ! " %$ %&
#$ #& ⺎釱 ⊂ ⫝⥼ mapping
! " #$ %$ #& %& ! " %$ %&
#$ #& ⺎釱 ⊂ ⫝⥼ mapping x axis, y axis, color, fill, shape, linetype, alpha… aesthetic channels
"QQMF &ODPEF 'SVJU 3FE JNBHF 3FBM *OGPSNBUJPO DIBOOFM
Data visualization with ggplot2 ! " #$ %$ #& %&
! " %$ %& #$ #& mapping x axis, y axis, color, fill, shape, linetype, alpha… aesthetic channels data
Data visualization with ggplot2 # install.packages("tidyverse") library(tidyverse) dat <- data.frame(a
= 1:3, b = 8:10) Attach package Simple example > dat a b 1 1 8 2 2 9 3 3 10
Data visualization with ggplot2 dat <- data.frame(a = 1:3, b
= 8:10) ggplot(data = dat)+ geom_point(mapping = aes(x = a, y = b))
Data visualization with ggplot2 dat <- data.frame(a = 1:3, b
= 8:10) ggplot(data = dat)+ geom_point(mapping = aes(x = a, y = b)) ! " #$ %$ #& %& ! " %$ %& #$ #& mapping x axis, y axis, color, fill, shape, linetype, alpha… aesthetic channels data
Data visualization with ggplot2 dat <- data.frame(a = 1:3, b
= 8:10) ggplot(data = dat)+ geom_point(mapping = aes(x = a, y = b)) ! " #$ %$ #& %& ! " %$ %& #$ #& mapping x axis, y axis, color, fill, shape, linetype, alpha… aesthetic channels data
Data visualization with ggplot2 dat <- data.frame(a = 1:3, b
= 8:10) ggplot(data = dat)+ geom_point(mapping = aes(x = a, y = b))+ geom_path(mapping = aes(x = a, y = b))
Data visualization with ggplot2 dat <- data.frame(a = 1:3, b
= 8:10) ggplot(data = dat, mapping = aes(x = a, y = b))+ geom_point()+ geom_path()
Data visualization with ggplot2 dat <- data.frame(a = 1:3, b
= 8:10) ggplot(data = dat, mapping = aes(x = a, y = b))+ geom_point()+ geom_path()
Data visualization with ggplot2 dat <- data.frame(a = 1:3, b
= 8:10) ggplot(data = dat)+ aes(x = a, y = b)+ geom_point()+ geom_path()
Data visualization with ggplot2 dat <- data.frame(a = 1:3, b
= 8:10) g <- ggplot(data = dat)+ aes(x = a, y = b) g+ geom_point()+ geom_path()
Data visualization with ggplot2 dat <- data.frame(a = 1:3, b
= 8:10) g <- ggplot(data = dat)+ aes(x = a, y = b)+ geom_point() g+ geom_path()
Data visualization with ggplot2 dat <- data.frame(x = 1:3, y1
= 8:10, y2 = 6:8) Simple example #2 > dat x y1 y2 1 1 8 6 2 2 9 7 3 3 10 8
Data visualization with ggplot2 dat <- data.frame(x = 1:3, y1
= 8:10, y2 = 6:8) Simple example #2 > dat x y1 y2 1 1 8 6 2 2 9 7 3 3 10 8 mapping
Data visualization with ggplot2 dat <- data.frame(x = 1:3, y1
= 8:10, y2 = 6:8) Simple example #2 > dat x y1 y2 1 1 8 6 2 2 9 7 3 3 10 8 mapping y x aes(x = x, y = ???)
Data visualization with ggplot2 dat <- data.frame(x = 1:3, y1
= 8:10, y2 = 6:8) Simple example #2 > dat x y1 y2 1 1 8 6 2 2 9 7 3 3 10 8 aes(x = x, y = y) x key y 1 1 y1 8 2 1 y2 6 3 2 y1 9 4 2 y2 7 5 3 y1 10 6 3 y2 8
Data visualization with ggplot2 dat <- data.frame(x = 1:3, y1
= 8:10, y2 = 6:8) Simple example #2 > dat x y1 y2 1 1 8 6 2 2 9 7 3 3 10 8 > dat_long x key y 1 1 y1 8 2 1 y2 6 3 2 y1 9 4 2 y2 7 5 3 y1 10 6 3 y2 8 Wide Long Long format Wide format
Data visualization with ggplot2 dat <- data.frame(x = 1:3, y1
= 8:10, y2 = 6:8) Simple example #2 dat_long <- pivot_longer(data = dat, cols = starts_with("y"), names_to = "key", values_to = "y") > dat_long x key y 1 1 y1 8 2 1 y2 6 3 2 y1 9 4 2 y2 7 5 3 y1 10 6 3 y2 8
Data visualization with ggplot2 dat <- data.frame(x = 1:3, y1
= 8:10, y2 = 6:8) Simple example #2 dat_long <- pivot_longer(data = dat, cols = starts_with("y"), names_to = "key", values_to = "y") > dat_long x key y 1 1 y1 8 2 1 y2 6 3 2 y1 9 4 2 y2 7 5 3 y1 10 6 3 y2 8 ggplot(data = dat_long)+ aes(x = x, y = y, color = key)+ geom_point()+ geom_path()
Data visualization with ggplot2 dat <- data.frame(x = 1:3, y1
= 8:10, y2 = 6:8) Simple example #2 dat_long <- pivot_longer(data = dat, cols = starts_with("y"), names_to = "key", values_to = "y") > dat_long x key y 1 1 y1 8 2 1 y2 6 3 2 y1 9 4 2 y2 7 5 3 y1 10 6 3 y2 8 ggplot(data = dat_long)+ aes(x = x, y = y, color = key)+ geom_point()+ geom_path()
Data visualization with ggplot2 > anscombe x1 x2 x3 x4
y1 y2 y3 y4 1 10 10 10 8 8.04 9.14 7.46 6.58 2 8 8 8 8 6.95 8.14 6.77 5.76 3 13 13 13 8 7.58 8.74 12.74 7.71 4 9 9 9 8 8.81 8.77 7.11 8.84 5 11 11 11 8 8.33 9.26 7.81 8.47 6 14 14 14 8 9.96 8.10 8.84 7.04 7 6 6 6 8 7.24 6.13 6.08 5.25 8 4 4 4 19 4.26 3.10 5.39 12.50 9 12 12 12 8 10.84 9.13 8.15 5.56 10 7 7 7 8 4.82 7.26 6.42 7.91 11 5 5 5 8 5.68 4.74 5.73 6.89
Data visualization with ggplot2 > anscombe x1 x2 x3 x4
y1 y2 y3 y4 1 10 10 10 8 8.04 9.14 7.46 6.58 2 8 8 8 8 6.95 8.14 6.77 5.76 3 13 13 13 8 7.58 8.74 12.74 7.71 4 9 9 9 8 8.81 8.77 7.11 8.84 5 11 11 11 8 8.33 9.26 7.81 8.47 6 14 14 14 8 9.96 8.10 8.84 7.04 7 6 6 6 8 7.24 6.13 6.08 5.25 8 4 4 4 19 4.26 3.10 5.39 12.50 9 12 12 12 8 10.84 9.13 8.15 5.56 10 7 7 7 8 4.82 7.26 6.42 7.91 11 5 5 5 8 5.68 4.74 5.73 6.89
Data visualization with ggplot2 > anscombe x1 x2 x3 x4
y1 y2 y3 y4 1 10 10 10 8 8.04 9.14 7.46 6.58 2 8 8 8 8 6.95 8.14 6.77 5.76 3 13 13 13 8 7.58 8.74 12.74 7.71 4 9 9 9 8 8.81 8.77 7.11 8.84 5 11 11 11 8 8.33 9.26 7.81 8.47 6 14 14 14 8 9.96 8.10 8.84 7.04 7 6 6 6 8 7.24 6.13 6.08 5.25 8 4 4 4 19 4.26 3.10 5.39 12.50 9 12 12 12 8 10.84 9.13 8.15 5.56 10 7 7 7 8 4.82 7.26 6.42 7.91 11 5 5 5 8 5.68 4.74 5.73 6.89 a > anscombe_long # A tibble: 44 x 3 key x y <chr> <dbl> <dbl> 1 1 10 8.04 2 2 10 9.14 3 3 10 7.46 4 4 8 6.58 5 1 8 6.95 6 2 8 8.14 7 3 8 6.77 8 4 8 5.76
Data visualization with ggplot2 > anscombe x1 x2 x3 x4
y1 y2 y3 y4 1 10 10 10 8 8.04 9.14 7.46 6.58 2 8 8 8 8 6.95 8.14 6.77 5.76 3 13 13 13 8 7.58 8.74 12.74 7.71 anscombe_long <- pivot_longer(data = anscombe, cols = everything(), names_pattern = "(.)(.)", names_to = c(".value", "key"))
> anscombe x1 x2 x3 x4 y1 y2 y3 y4
1 10 10 10 8 8.04 9.14 7.46 6.58 2 8 8 8 8 6.95 8.14 6.77 5.76 3 13 13 13 8 7.58 8.74 12.74 7.71 Data visualization with ggplot2 anscombe_long <- pivot_longer(data = anscombe, cols = everything(), names_pattern = "(.)(.)", names_to = c(".value", "key"))
Data visualization with ggplot2 anscombe_long <- pivot_longer(data = anscombe, cols
= everything(), names_pattern = "(.)(.)", names_to = c(".value", "key")) > anscombe_long # A tibble: 44 x 3 key x y <chr> <dbl> <dbl> 1 1 10 8.04 2 2 10 9.14 3 3 10 7.46 4 4 8 6.58 5 1 8 6.95 6 2 8 8.14 7 3 8 6.77 8 4 8 5.76
Data visualization with ggplot2 anscombe_long <- pivot_longer(data = anscombe, cols
= everything(), names_pattern = "(.)(.)", names_to = c(".value", "key")) > anscombe_long # A tibble: 44 x 3 key x y <chr> <dbl> <dbl> 1 1 10 8.04 2 2 10 9.14 3 3 10 7.46 4 4 8 6.58 5 1 8 6.95 6 2 8 8.14 7 3 8 6.77 8 4 8 5.76 g_anscomb <- ggplot(data = anscombe_long)+ aes(x = x, y = y, color = key)+ geom_point()
Data visualization with ggplot2 anscombe_long <- pivot_longer(data = anscombe, cols
= everything(), names_pattern = "(.)(.)", names_to = c(".value", "key")) g_anscomb <- ggplot(data = anscombe_long)+ aes(x = x, y = y, color = key)+ geom_point() > anscombe_long # A tibble: 44 x 3 key x y <chr> <dbl> <dbl> 1 1 10 8.04 2 2 10 9.14 3 3 10 7.46 4 4 8 6.58 5 1 8 6.95 6 2 8 8.14 7 3 8 6.77 8 4 8 5.76
g_anscomb+ facet_wrap(~key) Data visualization with ggplot2 g_anscomb
g_anscomb+ facet_wrap(~key)+ theme(legend.position = "none") Data visualization with ggplot2
Summary…
䗯㕔 㲔㏇ ♞鐄 ظ٭ذ ظ٭ذ 鉮ꃿ 鐐갭 䙫䓙婊㲊
ظ٭ذ 䗯㕔 㲔㏇ 鈝峮ס僗扛מ 㰆㏇יַסאסס 㲔㏇瑞⺘ג辐霄 䗯㕔סֹה䙫䓙⚥鷼٬ 鉮ꃿ٬⭚杼מ鸵ג ⫋⮵榫⺎耆םס 瑞⺘
鈝㴔 鈝峮 湳釶
"QQMF &ODPEF 'SVJU 3FE JNBHF 3FBM *OGPSNBUJPO DIBOOFM
-PTT͛ Symbol grounding problem %JWFSHFODF 3FBM *OGP %BUB "QQMF &ODPEJOH
⫝⥼ (mapping) !: # → % # % ֵ䗯㕔ס⺬ס釐碛յ⮯ס䗯㕔ס⺬ס גדחס釐碛מ㵚䑴טׄوٞجت
! " #$ %$ #& %& ! " %$ %&
#$ #& ⺎釱 ⊂ ⫝⥼ mapping x axis, y axis, color, fill, shape, linetype, alpha… aesthetic channels
Data visualization with ggplot2 dat <- data.frame(a = 1:3, b
= 8:10) ggplot(data = dat)+ geom_point(mapping = aes(x = a, y = b)) ! " #$ %$ #& %& ! " %$ %& #$ #& mapping x axis, y axis, color, fill, shape, linetype, alpha… aesthetic channels data
Data visualization with ggplot2 dat <- data.frame(a = 1:3, b
= 8:10) ggplot(data = dat)+ aes(x = a, y = b)+ geom_point()+ geom_path()
Data visualization with ggplot2 dat <- data.frame(x = 1:3, y1
= 8:10, y2 = 6:8) Simple example #2 > dat x y1 y2 1 1 8 6 2 2 9 7 3 3 10 8 > dat_long x key y 1 1 y1 8 2 1 y2 6 3 2 y1 9 4 2 y2 7 5 3 y1 10 6 3 y2 8 Wide Long Long format Wide format
Data visualization with ggplot2 dat <- data.frame(x = 1:3, y1
= 8:10, y2 = 6:8) Simple example #2 dat_long <- pivot_longer(data = dat, cols = starts_with("y"), names_to = "key", values_to = "y") > dat_long x key y 1 1 y1 8 2 1 y2 6 3 2 y1 9 4 2 y2 7 5 3 y1 10 6 3 y2 8 ggplot(data = dat_long)+ aes(x = x, y = y, color = key)+ geom_point()+ geom_path()
Wide Long Nested input output pivot_longer pivot_wider group_nest unnest ggplot
visualization map output ggsave
enjoy!