Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
第85回Tokyo.R初心者セッション:データ可視化
Search
Sponsored
·
Ship Features Fearlessly
Turn features on and off without deploys. Used by thousands of Ruby developers.
→
kilometer
May 23, 2020
Technology
0
620
第85回Tokyo.R初心者セッション:データ可視化
第85回Tokyo.R初心者セッションのトークスライドです。
kilometer
May 23, 2020
Tweet
Share
More Decks by kilometer
See All by kilometer
TokyoR#111_ANOVA
kilometer
2
950
TokyoR109.pdf
kilometer
1
520
TokyoR#108_NestedDataHandling
kilometer
0
900
TokyoR#107_R_GeoData
kilometer
0
500
SappoRo.R_roundrobin
kilometer
0
170
TokyoR#104_DataProcessing
kilometer
1
750
TokyoR#103_DataProcessing
kilometer
0
960
TokyoR#102_RMarkdown
kilometer
1
710
TokyoR#101_RegressionAnalysis
kilometer
0
530
Other Decks in Technology
See All in Technology
Oracle Base Database Service 技術詳細
oracle4engineer
PRO
15
93k
OpenShiftでllm-dを動かそう!
jpishikawa
0
140
ClickHouseはどのように大規模データを活用したAIエージェントを全社展開しているのか
mikimatsumoto
0
270
(技術的には)社内システムもOKなブラウザエージェントを作ってみた!
har1101
0
340
pool.ntp.orgに ⾃宅サーバーで 参加してみたら...
tanyorg
0
1.4k
Kiro IDEのドキュメントを全部読んだので地味だけどちょっと嬉しい機能を紹介する
khmoryz
0
210
登壇駆動学習のすすめ — CfPのネタの見つけ方と書くときに意識していること
bicstone
3
130
コスト削減から「セキュリティと利便性」を担うプラットフォームへ
sansantech
PRO
3
1.6k
AIが実装する時代、人間は仕様と検証を設計する
gotalab555
1
630
30万人の同時アクセスに耐えたい!新サービスの盤石なリリースを支える負荷試験 / SRE Kaigi 2026
genda
4
1.4k
20260208_第66回 コンピュータビジョン勉強会
keiichiito1978
0
200
Why Organizations Fail: ノーベル経済学賞「国家はなぜ衰退するのか」から考えるアジャイル組織論
kawaguti
PRO
1
220
Featured
See All Featured
Organizational Design Perspectives: An Ontology of Organizational Design Elements
kimpetersen
PRO
1
470
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
659
61k
How to optimise 3,500 product descriptions for ecommerce in one day using ChatGPT
katarinadahlin
PRO
0
3.4k
Utilizing Notion as your number one productivity tool
mfonobong
3
220
Mozcon NYC 2025: Stop Losing SEO Traffic
samtorres
0
150
Conquering PDFs: document understanding beyond plain text
inesmontani
PRO
4
2.3k
The untapped power of vector embeddings
frankvandijk
1
1.6k
The World Runs on Bad Software
bkeepers
PRO
72
12k
Lessons Learnt from Crawling 1000+ Websites
charlesmeaden
PRO
1
1.1k
The innovator’s Mindset - Leading Through an Era of Exponential Change - McGill University 2025
jdejongh
PRO
1
96
エンジニアに許された特別な時間の終わり
watany
106
230k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
508
140k
Transcript
BeginneR Session #85 Tokyo.R 2020.05.23 online @kilometer00 - Data visualization
-
Who!? 誰だ?
Who!? 名前: 三村 @kilometer 職業: ポスドク (こうがくはくし) 専⾨: ⾏動神経科学(霊⻑類) 脳イメージング
医療システム⼯学 R歴: ~ 10年ぐらい 流⾏: Craft beer
BeginneR Session - Data visualization -
Wide Long Nested input output pivot_longer pivot_wider group_nest unnest ggplot
visualization map output ggsave
Wide Long Nested input output pivot_longer pivot_wider group_nest unnest ggplot
visualization map output ggsave
٬ظ٭ذ⺎釱כַֹ◄ ٬HHQMPUס㓹灄
ظ٭ذ 䗯㕔 㲔㏇ 鈝峮ס僗扛מ 㰆㏇יַסאסס 㲔㏇瑞⺘ג辐霄 瑞⺘ 鈝㴔 鈝峮 湳釶
ظ٭ذ 䗯㕔 㲔㏇ 鈝峮ס僗扛מ 㰆㏇יַסאסס 㲔㏇瑞⺘ג辐霄 䗯㕔סֹה䙫䓙⚥鷼٬ 鉮ꃿ٬⭚杼מ鸵ג ⫋⮵榫⺎耆םס 瑞⺘
鈝㴔 鈝峮 湳釶
&ODPEF "QQMF 3FBM "QQMF *OGPSNBUJPO %FDPEF
%JWFSHFODF 3FBM *OGP %BUB "QQMF &ODPEJOH
-PTT͛ Symbol grounding problem %JWFSHFODF 3FBM *OGP %BUB "QQMF &ODPEJOH
"QQMF &ODPEF 'SVJU 3FE JNBHF 3FBM *OGPSNBUJPO
"QQMF &ODPEF 'SVJU 3FE JNBHF 3FBM *OGPSNBUJPO DIBOOFM
䗯㕔 㲔㏇ ♞鐄 ظ٭ذ زٔؾٜכ瑞⺘ס鹟䥃 瑞⺘
䗯㕔 㲔㏇ ♞鐄 ظ٭ذ ظ٭ذ ظ٭ذ 鉮ꃿ ⫝⥼ ⫝⥼
䗯㕔 㲔㏇ ♞鐄 ظ٭ذ ظ٭ذ ظ٭ذ 鉮ꃿ ⫝⥼
䗯㕔 㲔㏇ ♞鐄 ظ٭ذ ظ٭ذ 鉮ꃿ 鐐갭 䙫䓙婊㲊
⫝⥼ (mapping) !: # → % # % ֵ䗯㕔ס⺬ס釐碛յ⮯ס䗯㕔ס⺬ס גדחס釐碛מ㵚䑴טׄوٞجت
⫝⥼ (mapping) ! " #: % → ' % '
# ! = " ꞊丗 ⊂ ⫝⥼
! " #$ %$ #& %& ! " %$ %&
#$ #& ⺎釱 ⊂ ⫝⥼ mapping
! " #$ %$ #& %& ! " %$ %&
#$ #& ⺎釱 ⊂ ⫝⥼ mapping x axis, y axis, color, fill, shape, linetype, alpha… aesthetic channels
"QQMF &ODPEF 'SVJU 3FE JNBHF 3FBM *OGPSNBUJPO DIBOOFM
Data visualization with ggplot2 ! " #$ %$ #& %&
! " %$ %& #$ #& mapping x axis, y axis, color, fill, shape, linetype, alpha… aesthetic channels data
Data visualization with ggplot2 # install.packages("tidyverse") library(tidyverse) dat <- data.frame(a
= 1:3, b = 8:10) Attach package Simple example > dat a b 1 1 8 2 2 9 3 3 10
Data visualization with ggplot2 dat <- data.frame(a = 1:3, b
= 8:10) ggplot(data = dat)+ geom_point(mapping = aes(x = a, y = b))
Data visualization with ggplot2 dat <- data.frame(a = 1:3, b
= 8:10) ggplot(data = dat)+ geom_point(mapping = aes(x = a, y = b)) ! " #$ %$ #& %& ! " %$ %& #$ #& mapping x axis, y axis, color, fill, shape, linetype, alpha… aesthetic channels data
Data visualization with ggplot2 dat <- data.frame(a = 1:3, b
= 8:10) ggplot(data = dat)+ geom_point(mapping = aes(x = a, y = b)) ! " #$ %$ #& %& ! " %$ %& #$ #& mapping x axis, y axis, color, fill, shape, linetype, alpha… aesthetic channels data
Data visualization with ggplot2 dat <- data.frame(a = 1:3, b
= 8:10) ggplot(data = dat)+ geom_point(mapping = aes(x = a, y = b))+ geom_path(mapping = aes(x = a, y = b))
Data visualization with ggplot2 dat <- data.frame(a = 1:3, b
= 8:10) ggplot(data = dat, mapping = aes(x = a, y = b))+ geom_point()+ geom_path()
Data visualization with ggplot2 dat <- data.frame(a = 1:3, b
= 8:10) ggplot(data = dat, mapping = aes(x = a, y = b))+ geom_point()+ geom_path()
Data visualization with ggplot2 dat <- data.frame(a = 1:3, b
= 8:10) ggplot(data = dat)+ aes(x = a, y = b)+ geom_point()+ geom_path()
Data visualization with ggplot2 dat <- data.frame(a = 1:3, b
= 8:10) g <- ggplot(data = dat)+ aes(x = a, y = b) g+ geom_point()+ geom_path()
Data visualization with ggplot2 dat <- data.frame(a = 1:3, b
= 8:10) g <- ggplot(data = dat)+ aes(x = a, y = b)+ geom_point() g+ geom_path()
Data visualization with ggplot2 dat <- data.frame(x = 1:3, y1
= 8:10, y2 = 6:8) Simple example #2 > dat x y1 y2 1 1 8 6 2 2 9 7 3 3 10 8
Data visualization with ggplot2 dat <- data.frame(x = 1:3, y1
= 8:10, y2 = 6:8) Simple example #2 > dat x y1 y2 1 1 8 6 2 2 9 7 3 3 10 8 mapping
Data visualization with ggplot2 dat <- data.frame(x = 1:3, y1
= 8:10, y2 = 6:8) Simple example #2 > dat x y1 y2 1 1 8 6 2 2 9 7 3 3 10 8 mapping y x aes(x = x, y = ???)
Data visualization with ggplot2 dat <- data.frame(x = 1:3, y1
= 8:10, y2 = 6:8) Simple example #2 > dat x y1 y2 1 1 8 6 2 2 9 7 3 3 10 8 aes(x = x, y = y) x key y 1 1 y1 8 2 1 y2 6 3 2 y1 9 4 2 y2 7 5 3 y1 10 6 3 y2 8
Data visualization with ggplot2 dat <- data.frame(x = 1:3, y1
= 8:10, y2 = 6:8) Simple example #2 > dat x y1 y2 1 1 8 6 2 2 9 7 3 3 10 8 > dat_long x key y 1 1 y1 8 2 1 y2 6 3 2 y1 9 4 2 y2 7 5 3 y1 10 6 3 y2 8 Wide Long Long format Wide format
Data visualization with ggplot2 dat <- data.frame(x = 1:3, y1
= 8:10, y2 = 6:8) Simple example #2 dat_long <- pivot_longer(data = dat, cols = starts_with("y"), names_to = "key", values_to = "y") > dat_long x key y 1 1 y1 8 2 1 y2 6 3 2 y1 9 4 2 y2 7 5 3 y1 10 6 3 y2 8
Data visualization with ggplot2 dat <- data.frame(x = 1:3, y1
= 8:10, y2 = 6:8) Simple example #2 dat_long <- pivot_longer(data = dat, cols = starts_with("y"), names_to = "key", values_to = "y") > dat_long x key y 1 1 y1 8 2 1 y2 6 3 2 y1 9 4 2 y2 7 5 3 y1 10 6 3 y2 8 ggplot(data = dat_long)+ aes(x = x, y = y, color = key)+ geom_point()+ geom_path()
Data visualization with ggplot2 dat <- data.frame(x = 1:3, y1
= 8:10, y2 = 6:8) Simple example #2 dat_long <- pivot_longer(data = dat, cols = starts_with("y"), names_to = "key", values_to = "y") > dat_long x key y 1 1 y1 8 2 1 y2 6 3 2 y1 9 4 2 y2 7 5 3 y1 10 6 3 y2 8 ggplot(data = dat_long)+ aes(x = x, y = y, color = key)+ geom_point()+ geom_path()
Data visualization with ggplot2 > anscombe x1 x2 x3 x4
y1 y2 y3 y4 1 10 10 10 8 8.04 9.14 7.46 6.58 2 8 8 8 8 6.95 8.14 6.77 5.76 3 13 13 13 8 7.58 8.74 12.74 7.71 4 9 9 9 8 8.81 8.77 7.11 8.84 5 11 11 11 8 8.33 9.26 7.81 8.47 6 14 14 14 8 9.96 8.10 8.84 7.04 7 6 6 6 8 7.24 6.13 6.08 5.25 8 4 4 4 19 4.26 3.10 5.39 12.50 9 12 12 12 8 10.84 9.13 8.15 5.56 10 7 7 7 8 4.82 7.26 6.42 7.91 11 5 5 5 8 5.68 4.74 5.73 6.89
Data visualization with ggplot2 > anscombe x1 x2 x3 x4
y1 y2 y3 y4 1 10 10 10 8 8.04 9.14 7.46 6.58 2 8 8 8 8 6.95 8.14 6.77 5.76 3 13 13 13 8 7.58 8.74 12.74 7.71 4 9 9 9 8 8.81 8.77 7.11 8.84 5 11 11 11 8 8.33 9.26 7.81 8.47 6 14 14 14 8 9.96 8.10 8.84 7.04 7 6 6 6 8 7.24 6.13 6.08 5.25 8 4 4 4 19 4.26 3.10 5.39 12.50 9 12 12 12 8 10.84 9.13 8.15 5.56 10 7 7 7 8 4.82 7.26 6.42 7.91 11 5 5 5 8 5.68 4.74 5.73 6.89
Data visualization with ggplot2 > anscombe x1 x2 x3 x4
y1 y2 y3 y4 1 10 10 10 8 8.04 9.14 7.46 6.58 2 8 8 8 8 6.95 8.14 6.77 5.76 3 13 13 13 8 7.58 8.74 12.74 7.71 4 9 9 9 8 8.81 8.77 7.11 8.84 5 11 11 11 8 8.33 9.26 7.81 8.47 6 14 14 14 8 9.96 8.10 8.84 7.04 7 6 6 6 8 7.24 6.13 6.08 5.25 8 4 4 4 19 4.26 3.10 5.39 12.50 9 12 12 12 8 10.84 9.13 8.15 5.56 10 7 7 7 8 4.82 7.26 6.42 7.91 11 5 5 5 8 5.68 4.74 5.73 6.89 a > anscombe_long # A tibble: 44 x 3 key x y <chr> <dbl> <dbl> 1 1 10 8.04 2 2 10 9.14 3 3 10 7.46 4 4 8 6.58 5 1 8 6.95 6 2 8 8.14 7 3 8 6.77 8 4 8 5.76
Data visualization with ggplot2 > anscombe x1 x2 x3 x4
y1 y2 y3 y4 1 10 10 10 8 8.04 9.14 7.46 6.58 2 8 8 8 8 6.95 8.14 6.77 5.76 3 13 13 13 8 7.58 8.74 12.74 7.71 anscombe_long <- pivot_longer(data = anscombe, cols = everything(), names_pattern = "(.)(.)", names_to = c(".value", "key"))
> anscombe x1 x2 x3 x4 y1 y2 y3 y4
1 10 10 10 8 8.04 9.14 7.46 6.58 2 8 8 8 8 6.95 8.14 6.77 5.76 3 13 13 13 8 7.58 8.74 12.74 7.71 Data visualization with ggplot2 anscombe_long <- pivot_longer(data = anscombe, cols = everything(), names_pattern = "(.)(.)", names_to = c(".value", "key"))
Data visualization with ggplot2 anscombe_long <- pivot_longer(data = anscombe, cols
= everything(), names_pattern = "(.)(.)", names_to = c(".value", "key")) > anscombe_long # A tibble: 44 x 3 key x y <chr> <dbl> <dbl> 1 1 10 8.04 2 2 10 9.14 3 3 10 7.46 4 4 8 6.58 5 1 8 6.95 6 2 8 8.14 7 3 8 6.77 8 4 8 5.76
Data visualization with ggplot2 anscombe_long <- pivot_longer(data = anscombe, cols
= everything(), names_pattern = "(.)(.)", names_to = c(".value", "key")) > anscombe_long # A tibble: 44 x 3 key x y <chr> <dbl> <dbl> 1 1 10 8.04 2 2 10 9.14 3 3 10 7.46 4 4 8 6.58 5 1 8 6.95 6 2 8 8.14 7 3 8 6.77 8 4 8 5.76 g_anscomb <- ggplot(data = anscombe_long)+ aes(x = x, y = y, color = key)+ geom_point()
Data visualization with ggplot2 anscombe_long <- pivot_longer(data = anscombe, cols
= everything(), names_pattern = "(.)(.)", names_to = c(".value", "key")) g_anscomb <- ggplot(data = anscombe_long)+ aes(x = x, y = y, color = key)+ geom_point() > anscombe_long # A tibble: 44 x 3 key x y <chr> <dbl> <dbl> 1 1 10 8.04 2 2 10 9.14 3 3 10 7.46 4 4 8 6.58 5 1 8 6.95 6 2 8 8.14 7 3 8 6.77 8 4 8 5.76
g_anscomb+ facet_wrap(~key) Data visualization with ggplot2 g_anscomb
g_anscomb+ facet_wrap(~key)+ theme(legend.position = "none") Data visualization with ggplot2
Summary…
䗯㕔 㲔㏇ ♞鐄 ظ٭ذ ظ٭ذ 鉮ꃿ 鐐갭 䙫䓙婊㲊
ظ٭ذ 䗯㕔 㲔㏇ 鈝峮ס僗扛מ 㰆㏇יַסאסס 㲔㏇瑞⺘ג辐霄 䗯㕔סֹה䙫䓙⚥鷼٬ 鉮ꃿ٬⭚杼מ鸵ג ⫋⮵榫⺎耆םס 瑞⺘
鈝㴔 鈝峮 湳釶
"QQMF &ODPEF 'SVJU 3FE JNBHF 3FBM *OGPSNBUJPO DIBOOFM
-PTT͛ Symbol grounding problem %JWFSHFODF 3FBM *OGP %BUB "QQMF &ODPEJOH
⫝⥼ (mapping) !: # → % # % ֵ䗯㕔ס⺬ס釐碛յ⮯ס䗯㕔ס⺬ס גדחס釐碛מ㵚䑴טׄوٞجت
! " #$ %$ #& %& ! " %$ %&
#$ #& ⺎釱 ⊂ ⫝⥼ mapping x axis, y axis, color, fill, shape, linetype, alpha… aesthetic channels
Data visualization with ggplot2 dat <- data.frame(a = 1:3, b
= 8:10) ggplot(data = dat)+ geom_point(mapping = aes(x = a, y = b)) ! " #$ %$ #& %& ! " %$ %& #$ #& mapping x axis, y axis, color, fill, shape, linetype, alpha… aesthetic channels data
Data visualization with ggplot2 dat <- data.frame(a = 1:3, b
= 8:10) ggplot(data = dat)+ aes(x = a, y = b)+ geom_point()+ geom_path()
Data visualization with ggplot2 dat <- data.frame(x = 1:3, y1
= 8:10, y2 = 6:8) Simple example #2 > dat x y1 y2 1 1 8 6 2 2 9 7 3 3 10 8 > dat_long x key y 1 1 y1 8 2 1 y2 6 3 2 y1 9 4 2 y2 7 5 3 y1 10 6 3 y2 8 Wide Long Long format Wide format
Data visualization with ggplot2 dat <- data.frame(x = 1:3, y1
= 8:10, y2 = 6:8) Simple example #2 dat_long <- pivot_longer(data = dat, cols = starts_with("y"), names_to = "key", values_to = "y") > dat_long x key y 1 1 y1 8 2 1 y2 6 3 2 y1 9 4 2 y2 7 5 3 y1 10 6 3 y2 8 ggplot(data = dat_long)+ aes(x = x, y = y, color = key)+ geom_point()+ geom_path()
Wide Long Nested input output pivot_longer pivot_wider group_nest unnest ggplot
visualization map output ggsave
enjoy!