Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
第85回Tokyo.R初心者セッション:データ可視化
Search
kilometer
May 23, 2020
Technology
0
590
第85回Tokyo.R初心者セッション:データ可視化
第85回Tokyo.R初心者セッションのトークスライドです。
kilometer
May 23, 2020
Tweet
Share
More Decks by kilometer
See All by kilometer
TokyoR#111_ANOVA
kilometer
2
870
TokyoR109.pdf
kilometer
1
460
TokyoR#108_NestedDataHandling
kilometer
0
800
TokyoR#107_R_GeoData
kilometer
0
420
SappoRo.R_roundrobin
kilometer
0
140
TokyoR#104_DataProcessing
kilometer
1
690
TokyoR#103_DataProcessing
kilometer
0
880
TokyoR#102_RMarkdown
kilometer
1
640
TokyoR#101_RegressionAnalysis
kilometer
0
380
Other Decks in Technology
See All in Technology
エンジニアのためのドキュメント力基礎講座〜構造化思考から始めよう〜(2025/02/15jbug広島#15発表資料)
yasuoyasuo
15
5.5k
Postmanを使いこなす!2025年ぜひとも押さえておきたいPostmanの10の機能
nagix
2
120
インフラをつくるとはどういうことなのか、 あるいはPlatform Engineeringについて
nwiizo
5
2.1k
Fintech SREの挑戦 PCI DSS対応をスマートにこなすインフラ戦略/Fintech SRE’s Challenge: Smart Infrastructure Strategies for PCI DSS Compliance
maaaato
0
450
7日間でハッキングをはじめる本をはじめてみませんか?_ITエンジニア本大賞2025
nomizone
2
1.4k
開発者が自律的に AWS Security Hub findings に 対応する仕組みと AWS re:Invent 2024 登壇体験談 / Developers autonomously report AWS Security Hub findings Corresponding mechanism and AWS re:Invent 2024 presentation experience
kaminashi
0
190
株式会社EventHub・エンジニア採用資料
eventhub
0
4.2k
SCSAから学ぶセキュリティ管理
masakamayama
0
140
スクラムのイテレーションを導入してチームの雰囲気がより良くなった話
eccyun
0
110
飲食店予約台帳を支えるインタラクティブ UI 設計と実装
siropaca
6
1.4k
High Performance PHP
cmuench
0
140
テストアーキテクチャ設計で実現する高品質で高スピードな開発の実践 / Test Architecture Design in Practice
ropqa
3
710
Featured
See All Featured
Gamification - CAS2011
davidbonilla
80
5.1k
Product Roadmaps are Hard
iamctodd
PRO
50
11k
GraphQLとの向き合い方2022年版
quramy
44
13k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
27
1.5k
The Cost Of JavaScript in 2023
addyosmani
47
7.3k
Rebuilding a faster, lazier Slack
samanthasiow
79
8.8k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
366
25k
The Illustrated Children's Guide to Kubernetes
chrisshort
48
49k
Fontdeck: Realign not Redesign
paulrobertlloyd
82
5.4k
What’s in a name? Adding method to the madness
productmarketing
PRO
22
3.3k
The World Runs on Bad Software
bkeepers
PRO
67
11k
Building Adaptive Systems
keathley
40
2.4k
Transcript
BeginneR Session #85 Tokyo.R 2020.05.23 online @kilometer00 - Data visualization
-
Who!? 誰だ?
Who!? 名前: 三村 @kilometer 職業: ポスドク (こうがくはくし) 専⾨: ⾏動神経科学(霊⻑類) 脳イメージング
医療システム⼯学 R歴: ~ 10年ぐらい 流⾏: Craft beer
BeginneR Session - Data visualization -
Wide Long Nested input output pivot_longer pivot_wider group_nest unnest ggplot
visualization map output ggsave
Wide Long Nested input output pivot_longer pivot_wider group_nest unnest ggplot
visualization map output ggsave
٬ظ٭ذ⺎釱כַֹ◄ ٬HHQMPUס㓹灄
ظ٭ذ 䗯㕔 㲔㏇ 鈝峮ס僗扛מ 㰆㏇יַסאסס 㲔㏇瑞⺘ג辐霄 瑞⺘ 鈝㴔 鈝峮 湳釶
ظ٭ذ 䗯㕔 㲔㏇ 鈝峮ס僗扛מ 㰆㏇יַסאסס 㲔㏇瑞⺘ג辐霄 䗯㕔סֹה䙫䓙⚥鷼٬ 鉮ꃿ٬⭚杼מ鸵ג ⫋⮵榫⺎耆םס 瑞⺘
鈝㴔 鈝峮 湳釶
&ODPEF "QQMF 3FBM "QQMF *OGPSNBUJPO %FDPEF
%JWFSHFODF 3FBM *OGP %BUB "QQMF &ODPEJOH
-PTT͛ Symbol grounding problem %JWFSHFODF 3FBM *OGP %BUB "QQMF &ODPEJOH
"QQMF &ODPEF 'SVJU 3FE JNBHF 3FBM *OGPSNBUJPO
"QQMF &ODPEF 'SVJU 3FE JNBHF 3FBM *OGPSNBUJPO DIBOOFM
䗯㕔 㲔㏇ ♞鐄 ظ٭ذ زٔؾٜכ瑞⺘ס鹟䥃 瑞⺘
䗯㕔 㲔㏇ ♞鐄 ظ٭ذ ظ٭ذ ظ٭ذ 鉮ꃿ ⫝⥼ ⫝⥼
䗯㕔 㲔㏇ ♞鐄 ظ٭ذ ظ٭ذ ظ٭ذ 鉮ꃿ ⫝⥼
䗯㕔 㲔㏇ ♞鐄 ظ٭ذ ظ٭ذ 鉮ꃿ 鐐갭 䙫䓙婊㲊
⫝⥼ (mapping) !: # → % # % ֵ䗯㕔ס⺬ס釐碛յ⮯ס䗯㕔ס⺬ס גדחס釐碛מ㵚䑴טׄوٞجت
⫝⥼ (mapping) ! " #: % → ' % '
# ! = " ꞊丗 ⊂ ⫝⥼
! " #$ %$ #& %& ! " %$ %&
#$ #& ⺎釱 ⊂ ⫝⥼ mapping
! " #$ %$ #& %& ! " %$ %&
#$ #& ⺎釱 ⊂ ⫝⥼ mapping x axis, y axis, color, fill, shape, linetype, alpha… aesthetic channels
"QQMF &ODPEF 'SVJU 3FE JNBHF 3FBM *OGPSNBUJPO DIBOOFM
Data visualization with ggplot2 ! " #$ %$ #& %&
! " %$ %& #$ #& mapping x axis, y axis, color, fill, shape, linetype, alpha… aesthetic channels data
Data visualization with ggplot2 # install.packages("tidyverse") library(tidyverse) dat <- data.frame(a
= 1:3, b = 8:10) Attach package Simple example > dat a b 1 1 8 2 2 9 3 3 10
Data visualization with ggplot2 dat <- data.frame(a = 1:3, b
= 8:10) ggplot(data = dat)+ geom_point(mapping = aes(x = a, y = b))
Data visualization with ggplot2 dat <- data.frame(a = 1:3, b
= 8:10) ggplot(data = dat)+ geom_point(mapping = aes(x = a, y = b)) ! " #$ %$ #& %& ! " %$ %& #$ #& mapping x axis, y axis, color, fill, shape, linetype, alpha… aesthetic channels data
Data visualization with ggplot2 dat <- data.frame(a = 1:3, b
= 8:10) ggplot(data = dat)+ geom_point(mapping = aes(x = a, y = b)) ! " #$ %$ #& %& ! " %$ %& #$ #& mapping x axis, y axis, color, fill, shape, linetype, alpha… aesthetic channels data
Data visualization with ggplot2 dat <- data.frame(a = 1:3, b
= 8:10) ggplot(data = dat)+ geom_point(mapping = aes(x = a, y = b))+ geom_path(mapping = aes(x = a, y = b))
Data visualization with ggplot2 dat <- data.frame(a = 1:3, b
= 8:10) ggplot(data = dat, mapping = aes(x = a, y = b))+ geom_point()+ geom_path()
Data visualization with ggplot2 dat <- data.frame(a = 1:3, b
= 8:10) ggplot(data = dat, mapping = aes(x = a, y = b))+ geom_point()+ geom_path()
Data visualization with ggplot2 dat <- data.frame(a = 1:3, b
= 8:10) ggplot(data = dat)+ aes(x = a, y = b)+ geom_point()+ geom_path()
Data visualization with ggplot2 dat <- data.frame(a = 1:3, b
= 8:10) g <- ggplot(data = dat)+ aes(x = a, y = b) g+ geom_point()+ geom_path()
Data visualization with ggplot2 dat <- data.frame(a = 1:3, b
= 8:10) g <- ggplot(data = dat)+ aes(x = a, y = b)+ geom_point() g+ geom_path()
Data visualization with ggplot2 dat <- data.frame(x = 1:3, y1
= 8:10, y2 = 6:8) Simple example #2 > dat x y1 y2 1 1 8 6 2 2 9 7 3 3 10 8
Data visualization with ggplot2 dat <- data.frame(x = 1:3, y1
= 8:10, y2 = 6:8) Simple example #2 > dat x y1 y2 1 1 8 6 2 2 9 7 3 3 10 8 mapping
Data visualization with ggplot2 dat <- data.frame(x = 1:3, y1
= 8:10, y2 = 6:8) Simple example #2 > dat x y1 y2 1 1 8 6 2 2 9 7 3 3 10 8 mapping y x aes(x = x, y = ???)
Data visualization with ggplot2 dat <- data.frame(x = 1:3, y1
= 8:10, y2 = 6:8) Simple example #2 > dat x y1 y2 1 1 8 6 2 2 9 7 3 3 10 8 aes(x = x, y = y) x key y 1 1 y1 8 2 1 y2 6 3 2 y1 9 4 2 y2 7 5 3 y1 10 6 3 y2 8
Data visualization with ggplot2 dat <- data.frame(x = 1:3, y1
= 8:10, y2 = 6:8) Simple example #2 > dat x y1 y2 1 1 8 6 2 2 9 7 3 3 10 8 > dat_long x key y 1 1 y1 8 2 1 y2 6 3 2 y1 9 4 2 y2 7 5 3 y1 10 6 3 y2 8 Wide Long Long format Wide format
Data visualization with ggplot2 dat <- data.frame(x = 1:3, y1
= 8:10, y2 = 6:8) Simple example #2 dat_long <- pivot_longer(data = dat, cols = starts_with("y"), names_to = "key", values_to = "y") > dat_long x key y 1 1 y1 8 2 1 y2 6 3 2 y1 9 4 2 y2 7 5 3 y1 10 6 3 y2 8
Data visualization with ggplot2 dat <- data.frame(x = 1:3, y1
= 8:10, y2 = 6:8) Simple example #2 dat_long <- pivot_longer(data = dat, cols = starts_with("y"), names_to = "key", values_to = "y") > dat_long x key y 1 1 y1 8 2 1 y2 6 3 2 y1 9 4 2 y2 7 5 3 y1 10 6 3 y2 8 ggplot(data = dat_long)+ aes(x = x, y = y, color = key)+ geom_point()+ geom_path()
Data visualization with ggplot2 dat <- data.frame(x = 1:3, y1
= 8:10, y2 = 6:8) Simple example #2 dat_long <- pivot_longer(data = dat, cols = starts_with("y"), names_to = "key", values_to = "y") > dat_long x key y 1 1 y1 8 2 1 y2 6 3 2 y1 9 4 2 y2 7 5 3 y1 10 6 3 y2 8 ggplot(data = dat_long)+ aes(x = x, y = y, color = key)+ geom_point()+ geom_path()
Data visualization with ggplot2 > anscombe x1 x2 x3 x4
y1 y2 y3 y4 1 10 10 10 8 8.04 9.14 7.46 6.58 2 8 8 8 8 6.95 8.14 6.77 5.76 3 13 13 13 8 7.58 8.74 12.74 7.71 4 9 9 9 8 8.81 8.77 7.11 8.84 5 11 11 11 8 8.33 9.26 7.81 8.47 6 14 14 14 8 9.96 8.10 8.84 7.04 7 6 6 6 8 7.24 6.13 6.08 5.25 8 4 4 4 19 4.26 3.10 5.39 12.50 9 12 12 12 8 10.84 9.13 8.15 5.56 10 7 7 7 8 4.82 7.26 6.42 7.91 11 5 5 5 8 5.68 4.74 5.73 6.89
Data visualization with ggplot2 > anscombe x1 x2 x3 x4
y1 y2 y3 y4 1 10 10 10 8 8.04 9.14 7.46 6.58 2 8 8 8 8 6.95 8.14 6.77 5.76 3 13 13 13 8 7.58 8.74 12.74 7.71 4 9 9 9 8 8.81 8.77 7.11 8.84 5 11 11 11 8 8.33 9.26 7.81 8.47 6 14 14 14 8 9.96 8.10 8.84 7.04 7 6 6 6 8 7.24 6.13 6.08 5.25 8 4 4 4 19 4.26 3.10 5.39 12.50 9 12 12 12 8 10.84 9.13 8.15 5.56 10 7 7 7 8 4.82 7.26 6.42 7.91 11 5 5 5 8 5.68 4.74 5.73 6.89
Data visualization with ggplot2 > anscombe x1 x2 x3 x4
y1 y2 y3 y4 1 10 10 10 8 8.04 9.14 7.46 6.58 2 8 8 8 8 6.95 8.14 6.77 5.76 3 13 13 13 8 7.58 8.74 12.74 7.71 4 9 9 9 8 8.81 8.77 7.11 8.84 5 11 11 11 8 8.33 9.26 7.81 8.47 6 14 14 14 8 9.96 8.10 8.84 7.04 7 6 6 6 8 7.24 6.13 6.08 5.25 8 4 4 4 19 4.26 3.10 5.39 12.50 9 12 12 12 8 10.84 9.13 8.15 5.56 10 7 7 7 8 4.82 7.26 6.42 7.91 11 5 5 5 8 5.68 4.74 5.73 6.89 a > anscombe_long # A tibble: 44 x 3 key x y <chr> <dbl> <dbl> 1 1 10 8.04 2 2 10 9.14 3 3 10 7.46 4 4 8 6.58 5 1 8 6.95 6 2 8 8.14 7 3 8 6.77 8 4 8 5.76
Data visualization with ggplot2 > anscombe x1 x2 x3 x4
y1 y2 y3 y4 1 10 10 10 8 8.04 9.14 7.46 6.58 2 8 8 8 8 6.95 8.14 6.77 5.76 3 13 13 13 8 7.58 8.74 12.74 7.71 anscombe_long <- pivot_longer(data = anscombe, cols = everything(), names_pattern = "(.)(.)", names_to = c(".value", "key"))
> anscombe x1 x2 x3 x4 y1 y2 y3 y4
1 10 10 10 8 8.04 9.14 7.46 6.58 2 8 8 8 8 6.95 8.14 6.77 5.76 3 13 13 13 8 7.58 8.74 12.74 7.71 Data visualization with ggplot2 anscombe_long <- pivot_longer(data = anscombe, cols = everything(), names_pattern = "(.)(.)", names_to = c(".value", "key"))
Data visualization with ggplot2 anscombe_long <- pivot_longer(data = anscombe, cols
= everything(), names_pattern = "(.)(.)", names_to = c(".value", "key")) > anscombe_long # A tibble: 44 x 3 key x y <chr> <dbl> <dbl> 1 1 10 8.04 2 2 10 9.14 3 3 10 7.46 4 4 8 6.58 5 1 8 6.95 6 2 8 8.14 7 3 8 6.77 8 4 8 5.76
Data visualization with ggplot2 anscombe_long <- pivot_longer(data = anscombe, cols
= everything(), names_pattern = "(.)(.)", names_to = c(".value", "key")) > anscombe_long # A tibble: 44 x 3 key x y <chr> <dbl> <dbl> 1 1 10 8.04 2 2 10 9.14 3 3 10 7.46 4 4 8 6.58 5 1 8 6.95 6 2 8 8.14 7 3 8 6.77 8 4 8 5.76 g_anscomb <- ggplot(data = anscombe_long)+ aes(x = x, y = y, color = key)+ geom_point()
Data visualization with ggplot2 anscombe_long <- pivot_longer(data = anscombe, cols
= everything(), names_pattern = "(.)(.)", names_to = c(".value", "key")) g_anscomb <- ggplot(data = anscombe_long)+ aes(x = x, y = y, color = key)+ geom_point() > anscombe_long # A tibble: 44 x 3 key x y <chr> <dbl> <dbl> 1 1 10 8.04 2 2 10 9.14 3 3 10 7.46 4 4 8 6.58 5 1 8 6.95 6 2 8 8.14 7 3 8 6.77 8 4 8 5.76
g_anscomb+ facet_wrap(~key) Data visualization with ggplot2 g_anscomb
g_anscomb+ facet_wrap(~key)+ theme(legend.position = "none") Data visualization with ggplot2
Summary…
䗯㕔 㲔㏇ ♞鐄 ظ٭ذ ظ٭ذ 鉮ꃿ 鐐갭 䙫䓙婊㲊
ظ٭ذ 䗯㕔 㲔㏇ 鈝峮ס僗扛מ 㰆㏇יַסאסס 㲔㏇瑞⺘ג辐霄 䗯㕔סֹה䙫䓙⚥鷼٬ 鉮ꃿ٬⭚杼מ鸵ג ⫋⮵榫⺎耆םס 瑞⺘
鈝㴔 鈝峮 湳釶
"QQMF &ODPEF 'SVJU 3FE JNBHF 3FBM *OGPSNBUJPO DIBOOFM
-PTT͛ Symbol grounding problem %JWFSHFODF 3FBM *OGP %BUB "QQMF &ODPEJOH
⫝⥼ (mapping) !: # → % # % ֵ䗯㕔ס⺬ס釐碛յ⮯ס䗯㕔ס⺬ס גדחס釐碛מ㵚䑴טׄوٞجت
! " #$ %$ #& %& ! " %$ %&
#$ #& ⺎釱 ⊂ ⫝⥼ mapping x axis, y axis, color, fill, shape, linetype, alpha… aesthetic channels
Data visualization with ggplot2 dat <- data.frame(a = 1:3, b
= 8:10) ggplot(data = dat)+ geom_point(mapping = aes(x = a, y = b)) ! " #$ %$ #& %& ! " %$ %& #$ #& mapping x axis, y axis, color, fill, shape, linetype, alpha… aesthetic channels data
Data visualization with ggplot2 dat <- data.frame(a = 1:3, b
= 8:10) ggplot(data = dat)+ aes(x = a, y = b)+ geom_point()+ geom_path()
Data visualization with ggplot2 dat <- data.frame(x = 1:3, y1
= 8:10, y2 = 6:8) Simple example #2 > dat x y1 y2 1 1 8 6 2 2 9 7 3 3 10 8 > dat_long x key y 1 1 y1 8 2 1 y2 6 3 2 y1 9 4 2 y2 7 5 3 y1 10 6 3 y2 8 Wide Long Long format Wide format
Data visualization with ggplot2 dat <- data.frame(x = 1:3, y1
= 8:10, y2 = 6:8) Simple example #2 dat_long <- pivot_longer(data = dat, cols = starts_with("y"), names_to = "key", values_to = "y") > dat_long x key y 1 1 y1 8 2 1 y2 6 3 2 y1 9 4 2 y2 7 5 3 y1 10 6 3 y2 8 ggplot(data = dat_long)+ aes(x = x, y = y, color = key)+ geom_point()+ geom_path()
Wide Long Nested input output pivot_longer pivot_wider group_nest unnest ggplot
visualization map output ggsave
enjoy!