Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Machine Learning Quick Talk
Search
Krunal Kapadiya
October 13, 2018
Technology
4
130
Machine Learning Quick Talk
The quick conversation of few machine learning concept in GDG Ahmedabad community.
Krunal Kapadiya
October 13, 2018
Tweet
Share
More Decks by Krunal Kapadiya
See All by Krunal Kapadiya
Introduction to GCP
krunal3kapadiya
0
75
Dive in IAM
krunal3kapadiya
0
110
GCP_Storage.pdf
krunal3kapadiya
0
140
Kubernetes
krunal3kapadiya
0
86
Pub/Sub and DataFlow
krunal3kapadiya
0
100
ML at Udaipur
krunal3kapadiya
0
56
Machine Learning End to End at Surat
krunal3kapadiya
0
140
Android Jetpack Joyride
krunal3kapadiya
0
150
Things that you should know in ml
krunal3kapadiya
0
150
Other Decks in Technology
See All in Technology
大規模プロダクトで実践するAI活用の仕組みづくり
k1tikurisu
4
950
コンピューティングリソース何を使えばいいの?
tomokusaba
1
160
エンジニアに定年なし! AI時代にキャリアをReboot — 学び続けて未来を創る
junjikoide
0
180
嗚呼、当時の本番環境の状態で AI Agentを再評価したいなぁ...
po3rin
0
410
バクラクの AI-BPO を支える AI エージェント 〜とそれを支える Bet AI Guild〜
tomoaki25
2
750
AIと共に開発する時代の組織、プロセス設計 freeeでの実践から見えてきたこと
freee
3
680
「O(n log(n))のパフォーマンス」の意味がわかるようになろう
dhirabayashi
0
140
エンジニアにとってコードと並んで重要な「データ」のお話 - データが動くとコードが見える:関数型=データフロー入門
ismk
0
510
Rubyist入門: The Way to The Timeless Way of Programming
snoozer05
PRO
6
430
機密情報の漏洩を防げ! Webフロントエンド開発で意識すべき漏洩パターンとその対策
mizdra
PRO
9
3.2k
仕様は“書く”より“語る” - 分断を超えたチーム開発の実践 / 20251115 Naoki Takahashi
shift_evolve
PRO
1
790
今、MySQLのバックアップを作り直すとしたら何がどう良いのかを考える旅
yoku0825
0
300
Featured
See All Featured
How to Think Like a Performance Engineer
csswizardry
28
2.3k
Rails Girls Zürich Keynote
gr2m
95
14k
Balancing Empowerment & Direction
lara
5
740
Docker and Python
trallard
46
3.6k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
31
2.9k
Done Done
chrislema
186
16k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
194
17k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
36
6.1k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
31
2.7k
Making the Leap to Tech Lead
cromwellryan
135
9.6k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
11
930
Typedesign – Prime Four
hannesfritz
42
2.9k
Transcript
Machine Learning Quick Talk ML for every one @krunal3kapadiya #IndiaMLCC
Krunal Kapadiya Google Certified Associate Android Developer
Agenda - Generalization - Training set and Testing set -
Validation
Before we start
Let’s start a story NOTE: We will learn ML with
story of Jonathan Livingston Seagull
None
Measure of central tendency What is Mean? - Average value
from dataset
Measure of central tendency What is Mean? - Average value
from dataset What is Median? - Middle value of dataset
Measure of central tendency What is Mean? - Average value
from dataset What is Median? - Middle value of dataset What is Mode? - Repeated value of dataset
Measure of central tendency http://bit.ly/MeasureCentralTendency
Generalization (a.k.a out of sample error) - Measure of accuracy
for previously unseen data - Difference between expected and proven error - Mostly occurs in deep learning model, training sets working fine, but not fitting in real data
Training set and Testing set
Validations
None
None
None
None
Give me the reference links - https://developers.google.com/machine-learning/crash-course/ml-intro - https://www.kaggle.com/learn/overview -
https://towardsdatascience.com/train-test-split-and-cross-validation-in-python- 80b61beca4b6
Thank You https://krunal3kapadiya.app/ #IndiaMLCC @krunal3kapadiya if accuracy_score>0.75: