Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
棒グラフ、帯グラフ(、円グラフ) / Bar Charts (and Pie Chart)
Search
Kenji Saito
PRO
December 10, 2023
Business
0
260
棒グラフ、帯グラフ(、円グラフ) / Bar Charts (and Pie Chart)
早稲田大学大学院経営管理研究科「企業データ分析」2023 冬のオンデマンド教材 第6回で使用したスライドです。
Kenji Saito
PRO
December 10, 2023
Tweet
Share
More Decks by Kenji Saito
See All by Kenji Saito
ウェブサービスデザイン 2 / Web Service Design 2
ks91
PRO
0
7
Learning to Govern the Orbital Commons: A Serious Game on Incentivizing Debris Removal
ks91
PRO
0
3
FinTech 13-14 : FinTech Ideathon and Poster
ks91
PRO
0
90
講師自己紹介 / Lecturer Self-Introduction
ks91
PRO
0
18
講師研究紹介 / Lecturer Research Profile
ks91
PRO
0
12
NPO とは何か (を考えるワールドカフェ) / What is an NPO? (A World Café for Reflection)
ks91
PRO
0
70
FinTech 11-12 : Cyber-Physical Society and Future of Finance
ks91
PRO
0
67
AI 前提社会のキャッチ=22 (または私は如何にして民主主義、文書主義、人道的活動...) / Catch-22 in an AI-Premised Society (or How I Came to Democracy, Documentation, Humanitarian Activities...)
ks91
PRO
0
10
ウェブサービスデザイン 1 / Web Service Design 1
ks91
PRO
0
9
Other Decks in Business
See All in Business
WordPress で稼ぐな、WordPress を「使って」稼げ / Don’t Make Money from WordPress, Make Money with WordPress
tbshiki
0
170
転職せずに 仕事の満足度を上げる方法:ジョブ・クラフティング入門
megumikeda
1
1.2k
Third Intelligence Company Deck
thirdintelligence
0
2.5k
【pmconf2025】大企業でPdMとして貢献するために、5社で学んだ組織適応と価値創造の手法
wekkyyyy
2
1.4k
日本マーケティング学会2025発表_組織の市場志向形成におけるバウンダリースパナー行動とマーケターの越境的役割
nazoru
PRO
0
610
【エンジニア採用】BuySell Technologies会社説明資料
buyselltechnologies
3
80k
Fintech landscape updated - Japan section
hakusansai
0
990
明和不動産会社概要
prkoho
0
3.2k
Общероссийский проект «5 вёрст» и Карта гипотез
alexanderbyndyu
0
200
株式会社カタリス 会社紹介資料
lisakatano
0
280
現場とIT部門の橋渡しをして3000人の開発者を救った話 / Talk. Collaborate. Support. Lessons from Bridging Field and IT
nttcom
2
1.1k
Mercari-Fact-book_en
mercari_inc
2
30k
Featured
See All Featured
Site-Speed That Sticks
csswizardry
13
970
XXLCSS - How to scale CSS and keep your sanity
sugarenia
249
1.3M
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
162
15k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
25
1.6k
Six Lessons from altMBA
skipperchong
29
4.1k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
659
61k
Facilitating Awesome Meetings
lara
57
6.6k
Being A Developer After 40
akosma
91
590k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
285
14k
Scaling GitHub
holman
464
140k
Java REST API Framework Comparison - PWX 2021
mraible
34
9k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
21
1.3k
Transcript
generated by Stable Diffusion XL v1.0 2023 6 ( )
(WBS) 2023 6 ( ) — 2023-12 – p.1/23
https://speakerdeck.com/ks91/collections/corporate-data-analysis-2023-winter 2023 6 ( ) — 2023-12 – p.2/23
( 20 ) 1 • 2 R • 3 •
4 • 5 • 6 ( ) • 7 (1) 8 (2) 9 R ( ) (1) 10 R ( ) (2) 11 R ( ) (1) 12 R ( ) (2) 13 GPT-4 14 GPT-4 15 ( ) LaTeX Overleaf 8 (12/21 ) / (2 ) OK / 2023 6 ( ) — 2023-12 – p.3/23
( ) ( ) 2023 6 ( ) — 2023-12
– p.4/23
(bar chart) y ( ) cda-demo “ .R” Git 1
2023 6 ( ) — 2023-12 – p.5/23
“ .txt” 1 1 <- read.table(" .txt", header=T) 10 barplot(
1$ [1:10], names.arg=c(1:10), xlab=" ", ylab=" ", main=" 1 10 ") ‘barplot( . . . )’ : 2023 6 ( ) — 2023-12 – p.6/23
1 2 3 4 5 6 7 8 9 10
ฟᖍ␒ྕ1ࠥ10ࡢⱥㄒࡢヨ㦂⤖ᯝ ฟᖍ␒ྕ ᚓⅬ 0 20 40 60 80 2023 6 ( ) — 2023-12 – p.7/23
( 10 ) 1 2 ## t(table) table ## (matrix)
2 <- t( data.frame( = 1$ [1:10], = 1$ [1:10])) (‘beside=T’) barplot( , beside=T, names.arg=c(1:10), legend.text=T, ylim=c(0, 100), xlab=" ", ylab=" ", main=" 1 10 ") : 2023 6 ( ) — 2023-12 – p.8/23
1 2 3 4 5 6 7 8 9 10
ⱥㄒ ᩘᏛ ฟᖍ␒ྕ1ࠥ10ࡢⱥㄒ࣭ᩘᏛࡢヨ㦂⤖ᯝ ฟᖍ␒ྕ ᚓⅬ 0 20 40 60 80 100 2023 6 ( ) — 2023-12 – p.9/23
100% barplot 2023 6 ( ) — 2023-12 – p.10/23
A∼D ( 100%) X Y data1 <- c( "A "=51,
"B "=21, "C "=20, "D "=8) data2 <- c( "A "=33, "B "=35, "C "=20, "D "=12) data <- matrix(c(data1, data2), length(data1), 2) # 4 2 colnames(data) <- c("X ", "Y ") # 2023 6 ( ) — 2023-12 – p.11/23
barplot(data, horiz=T, col=cm.colors(4), xlab=" (%)", legend.text=names(data1), main=" ") ‘horiz’ (
F (False)) ‘col’ ‘cm.colors(4)’ cm ( ) 4 ‘legend.text=names(data1)’ data1 2023 6 ( ) — 2023-12 – p.12/23
Xᆅᇦ Yᆅᇦ A♫〇 B♫〇 C♫〇 D♫〇 ᆅᇦูࢩ࢙ ࢩ࢙ (%) 0
20 40 60 80 100 2023 6 ( ) — 2023-12 – p.13/23
( ) barplot(data, col=cm.colors(4), ylab=" (%)", legend.text=names(data1), main=" ") ‘horiz’
R ggplot2 2023 6 ( ) — 2023-12 – p.14/23
Xᆅᇦ Yᆅᇦ D♫〇 C♫〇 B♫〇 A♫〇 ᆅᇦูࢩ࢙ ࢩ࢙ (%) 0
20 40 60 80 100 2023 6 ( ) — 2023-12 – p.15/23
barplot(data, beside=T, col=cm.colors(4), ylab=" (%)", legend.text=names(data1), main=" ") ‘beside=T’ 2023
6 ( ) — 2023-12 – p.16/23
Xᆅᇦ Yᆅᇦ A♫〇 B♫〇 C♫〇 D♫〇 ᆅᇦูࢩ࢙ ࢩ࢙ (%) 0
10 20 30 40 50 2023 6 ( ) — 2023-12 – p.17/23
## ## col ## density density <- c(50, 25, 13,
7) barplot(data, beside=T, density=density, ylab=" (%)", legend.text=names(data1), main=" ") ‘density’ 2023 6 ( ) — 2023-12 – p.18/23
Xᆅᇦ Yᆅᇦ A♫〇 B♫〇 C♫〇 D♫〇 ᆅᇦูࢩ࢙ ࢩ࢙ (%) 0
10 20 30 40 50 2023 6 ( ) — 2023-12 – p.19/23
2023 6 ( ) — 2023-12 – p.20/23
pie(data1, col=cm.colors(4), main="X ") pie(data2, col=cm.colors(4), main="Y ") ‘pie( .
. . )’ 2023 6 ( ) — 2023-12 – p.21/23
A♫〇 B♫〇 C♫〇 D♫〇 Xᆅᇦ࡛ࡢࢩ࢙ A♫〇 B♫〇 C♫〇 D♫〇 Yᆅᇦ࡛ࡢࢩ࢙
X B C Y A B D % p.15 p.17 2023 6 ( ) — 2023-12 – p.22/23
2023 6 ( ) — 2023-12 – p.23/23