Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
棒グラフ、帯グラフ(、円グラフ) / Bar Charts (and Pie Chart)
Search
Kenji Saito
PRO
December 10, 2023
Business
0
200
棒グラフ、帯グラフ(、円グラフ) / Bar Charts (and Pie Chart)
早稲田大学大学院経営管理研究科「企業データ分析」2023 冬のオンデマンド教材 第6回で使用したスライドです。
Kenji Saito
PRO
December 10, 2023
Tweet
Share
More Decks by Kenji Saito
See All by Kenji Saito
関連2群のt検定/独立2群のt検定 / Related 2-group t-test and independent 2-group t-test
ks91
PRO
0
24
A Guide to Paper Writing Support with Generative AI - A Joint Zemi
ks91
PRO
0
6
正規分布と簡単な統計理論/t分布と信頼区間 / Normal distribution, simple statistical theory, t-distribution and confidence intervals
ks91
PRO
0
38
じわじわ迫ってきている自動化社会 (その先にメタ・ネイチャー) / The Slowly Approaching Automated Society (and its beyond: Meta-Nature)
ks91
PRO
0
6
起こりうる誤った推論/平均・分散・標準偏差・自由度 / Possible false inferences, means, variances, standard deviations and degrees of freedom
ks91
PRO
0
55
LaTeX と Overleaf によるショートペーパー作成 / Short paper writing with LaTeX and Overleaf
ks91
PRO
0
18
R を用いた検定(補講) (1) — Welch 検定 / Tests using R (supplementary) (1) - Welch test
ks91
PRO
0
11
R を用いた検定(補講) (2) — カイ二乗検定 / Tests using R (supplementary) (2) - Chi-squared test
ks91
PRO
0
12
R を用いた分析(補講) (1) — 重回帰分析 / Analysis using R (supplementary) (1) - Multiple regression analysis
ks91
PRO
0
10
Other Decks in Business
See All in Business
ハードウェア企業から700万ユーザーを抱えるB2B SaaSへ:PMのキャリアシフトで見えた共通点とギャップ
kubell_hr
0
3.8k
Creating Creators in the age of Generative AI - In SIGGRAPH ASIA 2024
o_ob
0
120
EM、会計を学ぶ
yigarashi
0
210
【エンジニア職】中途採用向け会社説明資料(テックファーム株式会社)
techfirm
0
4.2k
Canary Inc. Company Deck
canaryinc
0
40k
_HP掲載用_株式会社CloudSoft会社説明資料.pdf
csmatsushita
0
1.3k
pmconf2024 意思決定の質とスピードを上げるドキュメントの極意
issei123
1
6.6k
決算審査意見書自動作成ツール 改良プロジェクト
tokyo_metropolitan_gov_digital_hr
0
290
株式会社カオナビ】会社紹介資料 for business / kaonavi/introduction-for-business
kaonavi
0
110
無自覚にメンバーの心理的安全性を奪っていた経験から得た学び
lighttiger2505
141
190k
株式会社ワンコイングリッシュ 会社説明資料
oce_recruit
1
7.2k
Mercari-Fact-book_jp
mercari_inc
3
150k
Featured
See All Featured
Building a Modern Day E-commerce SEO Strategy
aleyda
38
7k
Build your cross-platform service in a week with App Engine
jlugia
229
18k
Designing for Performance
lara
604
68k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
26
1.9k
Agile that works and the tools we love
rasmusluckow
328
21k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
29
2k
Practical Orchestrator
shlominoach
186
10k
The Cult of Friendly URLs
andyhume
78
6.1k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
32
2.7k
Producing Creativity
orderedlist
PRO
341
39k
Code Review Best Practice
trishagee
65
17k
Gamification - CAS2011
davidbonilla
80
5.1k
Transcript
generated by Stable Diffusion XL v1.0 2023 6 ( )
(WBS) 2023 6 ( ) — 2023-12 – p.1/23
https://speakerdeck.com/ks91/collections/corporate-data-analysis-2023-winter 2023 6 ( ) — 2023-12 – p.2/23
( 20 ) 1 • 2 R • 3 •
4 • 5 • 6 ( ) • 7 (1) 8 (2) 9 R ( ) (1) 10 R ( ) (2) 11 R ( ) (1) 12 R ( ) (2) 13 GPT-4 14 GPT-4 15 ( ) LaTeX Overleaf 8 (12/21 ) / (2 ) OK / 2023 6 ( ) — 2023-12 – p.3/23
( ) ( ) 2023 6 ( ) — 2023-12
– p.4/23
(bar chart) y ( ) cda-demo “ .R” Git 1
2023 6 ( ) — 2023-12 – p.5/23
“ .txt” 1 1 <- read.table(" .txt", header=T) 10 barplot(
1$ [1:10], names.arg=c(1:10), xlab=" ", ylab=" ", main=" 1 10 ") ‘barplot( . . . )’ : 2023 6 ( ) — 2023-12 – p.6/23
1 2 3 4 5 6 7 8 9 10
ฟᖍ␒ྕ1ࠥ10ࡢⱥㄒࡢヨ㦂⤖ᯝ ฟᖍ␒ྕ ᚓⅬ 0 20 40 60 80 2023 6 ( ) — 2023-12 – p.7/23
( 10 ) 1 2 ## t(table) table ## (matrix)
2 <- t( data.frame( = 1$ [1:10], = 1$ [1:10])) (‘beside=T’) barplot( , beside=T, names.arg=c(1:10), legend.text=T, ylim=c(0, 100), xlab=" ", ylab=" ", main=" 1 10 ") : 2023 6 ( ) — 2023-12 – p.8/23
1 2 3 4 5 6 7 8 9 10
ⱥㄒ ᩘᏛ ฟᖍ␒ྕ1ࠥ10ࡢⱥㄒ࣭ᩘᏛࡢヨ㦂⤖ᯝ ฟᖍ␒ྕ ᚓⅬ 0 20 40 60 80 100 2023 6 ( ) — 2023-12 – p.9/23
100% barplot 2023 6 ( ) — 2023-12 – p.10/23
A∼D ( 100%) X Y data1 <- c( "A "=51,
"B "=21, "C "=20, "D "=8) data2 <- c( "A "=33, "B "=35, "C "=20, "D "=12) data <- matrix(c(data1, data2), length(data1), 2) # 4 2 colnames(data) <- c("X ", "Y ") # 2023 6 ( ) — 2023-12 – p.11/23
barplot(data, horiz=T, col=cm.colors(4), xlab=" (%)", legend.text=names(data1), main=" ") ‘horiz’ (
F (False)) ‘col’ ‘cm.colors(4)’ cm ( ) 4 ‘legend.text=names(data1)’ data1 2023 6 ( ) — 2023-12 – p.12/23
Xᆅᇦ Yᆅᇦ A♫〇 B♫〇 C♫〇 D♫〇 ᆅᇦูࢩ࢙ ࢩ࢙ (%) 0
20 40 60 80 100 2023 6 ( ) — 2023-12 – p.13/23
( ) barplot(data, col=cm.colors(4), ylab=" (%)", legend.text=names(data1), main=" ") ‘horiz’
R ggplot2 2023 6 ( ) — 2023-12 – p.14/23
Xᆅᇦ Yᆅᇦ D♫〇 C♫〇 B♫〇 A♫〇 ᆅᇦูࢩ࢙ ࢩ࢙ (%) 0
20 40 60 80 100 2023 6 ( ) — 2023-12 – p.15/23
barplot(data, beside=T, col=cm.colors(4), ylab=" (%)", legend.text=names(data1), main=" ") ‘beside=T’ 2023
6 ( ) — 2023-12 – p.16/23
Xᆅᇦ Yᆅᇦ A♫〇 B♫〇 C♫〇 D♫〇 ᆅᇦูࢩ࢙ ࢩ࢙ (%) 0
10 20 30 40 50 2023 6 ( ) — 2023-12 – p.17/23
## ## col ## density density <- c(50, 25, 13,
7) barplot(data, beside=T, density=density, ylab=" (%)", legend.text=names(data1), main=" ") ‘density’ 2023 6 ( ) — 2023-12 – p.18/23
Xᆅᇦ Yᆅᇦ A♫〇 B♫〇 C♫〇 D♫〇 ᆅᇦูࢩ࢙ ࢩ࢙ (%) 0
10 20 30 40 50 2023 6 ( ) — 2023-12 – p.19/23
2023 6 ( ) — 2023-12 – p.20/23
pie(data1, col=cm.colors(4), main="X ") pie(data2, col=cm.colors(4), main="Y ") ‘pie( .
. . )’ 2023 6 ( ) — 2023-12 – p.21/23
A♫〇 B♫〇 C♫〇 D♫〇 Xᆅᇦ࡛ࡢࢩ࢙ A♫〇 B♫〇 C♫〇 D♫〇 Yᆅᇦ࡛ࡢࢩ࢙
X B C Y A B D % p.15 p.17 2023 6 ( ) — 2023-12 – p.22/23
2023 6 ( ) — 2023-12 – p.23/23