Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
散布図と相関 / Scatter Plots and Correlations
Search
Kenji Saito
PRO
December 09, 2023
Business
0
62
散布図と相関 / Scatter Plots and Correlations
早稲田大学大学院経営管理研究科「企業データ分析」2023 冬のオンデマンド教材 第5回で使用したスライドです。
Kenji Saito
PRO
December 09, 2023
Tweet
Share
More Decks by Kenji Saito
See All by Kenji Saito
関連2群のt検定/独立2群のt検定 / Related 2-group t-test and independent 2-group t-test
ks91
PRO
0
24
A Guide to Paper Writing Support with Generative AI - A Joint Zemi
ks91
PRO
0
6
正規分布と簡単な統計理論/t分布と信頼区間 / Normal distribution, simple statistical theory, t-distribution and confidence intervals
ks91
PRO
0
38
じわじわ迫ってきている自動化社会 (その先にメタ・ネイチャー) / The Slowly Approaching Automated Society (and its beyond: Meta-Nature)
ks91
PRO
0
6
起こりうる誤った推論/平均・分散・標準偏差・自由度 / Possible false inferences, means, variances, standard deviations and degrees of freedom
ks91
PRO
0
55
LaTeX と Overleaf によるショートペーパー作成 / Short paper writing with LaTeX and Overleaf
ks91
PRO
0
18
R を用いた検定(補講) (1) — Welch 検定 / Tests using R (supplementary) (1) - Welch test
ks91
PRO
0
11
R を用いた検定(補講) (2) — カイ二乗検定 / Tests using R (supplementary) (2) - Chi-squared test
ks91
PRO
0
12
R を用いた分析(補講) (1) — 重回帰分析 / Analysis using R (supplementary) (1) - Multiple regression analysis
ks91
PRO
0
10
Other Decks in Business
See All in Business
【After】サービス紹介資料③_HP掲載用
redeslide
0
480
Amazon Q Developerの 最新アップデート情報まとめ
o2mami
0
1k
署内デジタルインフォボードの開発
tokyo_metropolitan_gov_digital_hr
0
310
「+ Joy」 初めは熱々だったはずなのに だんだん硬くて冷たくなっていく目標に 血を通わせる工夫_2024年度下期アップデート版
sasakendayo
0
190
2024.12_中途採用資料.pdf
superstudio
PRO
0
56k
よいPM定例はPM組織を強くする ~ 共有から共創へ、悩みを共に解決する場づくり ~
jouykw
1
6.3k
AWS の生成 AI 最前線 : 顧客起点のイノベーション
icoxfog417
PRO
0
910
Sales Marker Culture Book(English)
salesmarker
PRO
1
3k
CompanyDeck_v6.pdf
xid
3
17k
AWS re:Invent参加のリアル 〜女性目線で考える健康・美容・安全のベストプラクティス〜
o2mami
1
320
_RINGの会_令和の時代の保険募集実務とプロ代理店の対応.pdf
hakusansai
0
150
株式会社miibo|採用デック
natsumidnx
0
140
Featured
See All Featured
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
0
97
VelocityConf: Rendering Performance Case Studies
addyosmani
326
24k
How GitHub (no longer) Works
holman
311
140k
Thoughts on Productivity
jonyablonski
67
4.4k
How STYLIGHT went responsive
nonsquared
95
5.2k
The World Runs on Bad Software
bkeepers
PRO
65
11k
GitHub's CSS Performance
jonrohan
1030
460k
The Cost Of JavaScript in 2023
addyosmani
45
7k
The Power of CSS Pseudo Elements
geoffreycrofte
73
5.4k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
33
1.9k
Build your cross-platform service in a week with App Engine
jlugia
229
18k
Side Projects
sachag
452
42k
Transcript
generated by Stable Diffusion XL v1.0 2023 5 (WBS) 2023
5 — 2023-12 – p.1/16
https://speakerdeck.com/ks91/collections/corporate-data-analysis-2023-winter 2023 5 — 2023-12 – p.2/16
( 20 ) 1 • 2 R • 3 •
4 • 5 • 6 ( ) 7 (1) 8 (2) 9 R ( ) (1) 10 R ( ) (2) 11 R ( ) (1) 12 R ( ) (2) 13 GPT-4 14 GPT-4 15 ( ) LaTeX Overleaf 8 (12/21 ) / (2 ) OK / 2023 5 — 2023-12 – p.3/16
RStudio Git ( ) 2 2023 5 — 2023-12 –
p.4/16
RStudio Git ( ) RStudio Git Git ( GPL) GitHub
Git ( ) RStudio pull 2023 5 — 2023-12 – p.5/16
Git RStudio Git (OS ) Linux : ( OK) macOS
: Xcode (Apple ) Xcode AppStore https://apps.apple.com/jp/app/xcode/id497799835 Windows : https://gitforwindows.org OK https://github.com/ks91/cda-demo Git 2023 5 — 2023-12 – p.6/16
(scatter plot) 2 x y ( ) (◦ ) plot
(verb): mark out or allocate (points) on a graph cda-demo “ .R” 1 2023 5 — 2023-12 – p.7/16
“ .txt” 1 1 <- read.table(" .txt", header=T) plot( 1,
xlim=c(0, 100), ylim=c(0, 100), xlab=" ", ylab=" ", main=" ") : 2023 5 — 2023-12 – p.8/16
0 20 40 60 80 100 0 20 40 60
80 100 ṇࡢ┦㛵ࡢ ⱥㄒࡢヨ㦂⤖ᯝ ᩘᏛࡢヨ㦂⤖ᯝ 2023 5 — 2023-12 – p.9/16
“ .txt” 2 2 <- read.table(" .txt", header=T) plot( 2,
xlim=c(0, 20.0), ylim=c(13.0, 18.0), xlab=" ", ylab="100m ( )", main=" ") : 2023 5 — 2023-12 – p.10/16
0 5 10 15 20 13 14 15 16 17
18 ㈇ࡢ┦㛵ࡢ 㐌ᙜࡓࡾࡢㄢእ㐠ື㛫 100m㉮ࡢࢱ࣒ (⛊) 2023 5 — 2023-12 – p.11/16
1 2 plot( 1$ , 2$ , xlim=c(0, 100), ylim=c(13.0,
18.0), xlab=" ", ylab="100m ( )", main=" ") ( ) : 2023 5 — 2023-12 – p.12/16
0 20 40 60 80 100 13 14 15 16
17 18 ↓┦㛵ࡢ ⱥㄒࡢヨ㦂⤖ᯝ 100m㉮ࡢࢱ࣒ (⛊) 2023 5 — 2023-12 – p.13/16
3 1 2 3 3 <- data.frame( = 1$ ,
= 1$ , = 2$ , = 2$ ) plot( 3) 2 12 : plot 2023 5 — 2023-12 – p.14/16
ⱥㄒ 20 40 60 80 20 40 60 80 100
13 14 15 16 17 20 40 60 80 ᩘᏛ 㐠ື㛫 0 5 10 15 13 14 15 16 17 20 40 60 80 100 0 5 10 15 ▷㊥㞳 2023 5 — 2023-12 – p.15/16
2023 5 — 2023-12 – p.16/16