Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
散布図と相関 / Scatter Plots and Correlations
Search
Sponsored
·
Ship Features Fearlessly
Turn features on and off without deploys. Used by thousands of Ruby developers.
→
Kenji Saito
PRO
December 09, 2023
Business
0
78
散布図と相関 / Scatter Plots and Correlations
早稲田大学大学院経営管理研究科「企業データ分析」2023 冬のオンデマンド教材 第5回で使用したスライドです。
Kenji Saito
PRO
December 09, 2023
Tweet
Share
More Decks by Kenji Saito
See All by Kenji Saito
アナログAI からの逃走とメタ・ネイチャーポジティブ / Escape from Analog AI, and Meta-Nature Positive
ks91
PRO
0
3
AI 前提社会におけるトラスト / Trust in an AI-Driven Society
ks91
PRO
0
13
非営利組織の起業/発表と総括 / Starting up a Nonprofit Organization, Presentation and Summary
ks91
PRO
0
57
自己開発 / Self-Development
ks91
PRO
1
22
あなたは何によって憶えられたいですか? / What Do You Want to be Remembered for?
ks91
PRO
0
28
ボランティアと理事会 / Volunteers and Board of Directors
ks91
PRO
0
44
メタ・ネイチャーポジティブへの道 / The Path to Meta Nature Positive
ks91
PRO
0
35
アカデミーキャンプ2026 初春「ミライ、ゲーミファイ」DAY 3 / Academy Camp 2026 Early Spring "GAMIFY THE FUTURE!!" DAY 3
ks91
PRO
0
52
アカデミーキャンプ2026 初春「ミライ、ゲーミファイ」DAY 2 / Academy Camp 2026 Early Spring "GAMIFY THE FUTURE!!" DAY 2
ks91
PRO
0
87
Other Decks in Business
See All in Business
Just do it ! で 走り抜けてきたけど ちょっと立ち止まってみた
hakkadaikon
0
650
2025 サステナビリティレポート
mpower_partners
PRO
1
110
Growth Book
kuradashi
0
3.3k
RDRAで価値を可視化する
kanzaki
2
370
イオンモール新利府・デジタル証券 ~仙台近郊~徹底解説セミナー
c0rp_mdm
PRO
0
1.4k
プロダクトにAIを。 確率的なふるまいと向き合う。
sugitlab
1
380
習慣化するための技術 / Techniques for Habit Formation
3l4l5
1
260
株式会社Gizumo_会社紹介資料(2026.1更新)
gizumo
0
600
採用ピッチ資料
s_kamada
0
380
VISASQ: ABOUT DEV TEAM
eikohashiba
6
41k
Eco-Pork Impact Report 2026.02.09 EN
ecopork
0
210
【新卒向け】株式会社リブに興味のある方へ
libinc
0
11k
Featured
See All Featured
jQuery: Nuts, Bolts and Bling
dougneiner
65
8.4k
Context Engineering - Making Every Token Count
addyosmani
9
660
sira's awesome portfolio website redesign presentation
elsirapls
0
150
Agile that works and the tools we love
rasmusluckow
331
21k
How to optimise 3,500 product descriptions for ecommerce in one day using ChatGPT
katarinadahlin
PRO
0
3.4k
Organizational Design Perspectives: An Ontology of Organizational Design Elements
kimpetersen
PRO
1
190
The browser strikes back
jonoalderson
0
370
The Cult of Friendly URLs
andyhume
79
6.8k
Testing 201, or: Great Expectations
jmmastey
46
8k
Code Reviewing Like a Champion
maltzj
527
40k
Ruling the World: When Life Gets Gamed
codingconduct
0
140
Groundhog Day: Seeking Process in Gaming for Health
codingconduct
0
93
Transcript
generated by Stable Diffusion XL v1.0 2023 5 (WBS) 2023
5 — 2023-12 – p.1/16
https://speakerdeck.com/ks91/collections/corporate-data-analysis-2023-winter 2023 5 — 2023-12 – p.2/16
( 20 ) 1 • 2 R • 3 •
4 • 5 • 6 ( ) 7 (1) 8 (2) 9 R ( ) (1) 10 R ( ) (2) 11 R ( ) (1) 12 R ( ) (2) 13 GPT-4 14 GPT-4 15 ( ) LaTeX Overleaf 8 (12/21 ) / (2 ) OK / 2023 5 — 2023-12 – p.3/16
RStudio Git ( ) 2 2023 5 — 2023-12 –
p.4/16
RStudio Git ( ) RStudio Git Git ( GPL) GitHub
Git ( ) RStudio pull 2023 5 — 2023-12 – p.5/16
Git RStudio Git (OS ) Linux : ( OK) macOS
: Xcode (Apple ) Xcode AppStore https://apps.apple.com/jp/app/xcode/id497799835 Windows : https://gitforwindows.org OK https://github.com/ks91/cda-demo Git 2023 5 — 2023-12 – p.6/16
(scatter plot) 2 x y ( ) (◦ ) plot
(verb): mark out or allocate (points) on a graph cda-demo “ .R” 1 2023 5 — 2023-12 – p.7/16
“ .txt” 1 1 <- read.table(" .txt", header=T) plot( 1,
xlim=c(0, 100), ylim=c(0, 100), xlab=" ", ylab=" ", main=" ") : 2023 5 — 2023-12 – p.8/16
0 20 40 60 80 100 0 20 40 60
80 100 ṇࡢ┦㛵ࡢ ⱥㄒࡢヨ㦂⤖ᯝ ᩘᏛࡢヨ㦂⤖ᯝ 2023 5 — 2023-12 – p.9/16
“ .txt” 2 2 <- read.table(" .txt", header=T) plot( 2,
xlim=c(0, 20.0), ylim=c(13.0, 18.0), xlab=" ", ylab="100m ( )", main=" ") : 2023 5 — 2023-12 – p.10/16
0 5 10 15 20 13 14 15 16 17
18 ㈇ࡢ┦㛵ࡢ 㐌ᙜࡓࡾࡢㄢእ㐠ື㛫 100m㉮ࡢࢱ࣒ (⛊) 2023 5 — 2023-12 – p.11/16
1 2 plot( 1$ , 2$ , xlim=c(0, 100), ylim=c(13.0,
18.0), xlab=" ", ylab="100m ( )", main=" ") ( ) : 2023 5 — 2023-12 – p.12/16
0 20 40 60 80 100 13 14 15 16
17 18 ↓┦㛵ࡢ ⱥㄒࡢヨ㦂⤖ᯝ 100m㉮ࡢࢱ࣒ (⛊) 2023 5 — 2023-12 – p.13/16
3 1 2 3 3 <- data.frame( = 1$ ,
= 1$ , = 2$ , = 2$ ) plot( 3) 2 12 : plot 2023 5 — 2023-12 – p.14/16
ⱥㄒ 20 40 60 80 20 40 60 80 100
13 14 15 16 17 20 40 60 80 ᩘᏛ 㐠ື㛫 0 5 10 15 13 14 15 16 17 20 40 60 80 100 0 5 10 15 ▷㊥㞳 2023 5 — 2023-12 – p.15/16
2023 5 — 2023-12 – p.16/16