Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
さまざまなグラフ描画(1) / Various Chart Drawing 1
Search
Kenji Saito
PRO
December 11, 2023
Business
0
64
さまざまなグラフ描画(1) / Various Chart Drawing 1
早稲田大学大学院経営管理研究科「企業データ分析」2023 冬のオンデマンド教材 第7回で使用したスライドです。
Kenji Saito
PRO
December 11, 2023
Tweet
Share
More Decks by Kenji Saito
See All by Kenji Saito
P 値と有意差/分散分析 / P-value, Significant Difference and Analysis of Variance
ks91
PRO
0
32
関連2群のt検定/独立2群のt検定 / Related 2-group t-test and independent 2-group t-test
ks91
PRO
0
51
A Guide to Paper Writing Support with Generative AI - A Joint Zemi
ks91
PRO
0
12
正規分布と簡単な統計理論/t分布と信頼区間 / Normal distribution, simple statistical theory, t-distribution and confidence intervals
ks91
PRO
0
43
じわじわ迫ってきている自動化社会 (その先にメタ・ネイチャー) / The Slowly Approaching Automated Society (and its beyond: Meta-Nature)
ks91
PRO
0
8
起こりうる誤った推論/平均・分散・標準偏差・自由度 / Possible false inferences, means, variances, standard deviations and degrees of freedom
ks91
PRO
0
59
LaTeX と Overleaf によるショートペーパー作成 / Short paper writing with LaTeX and Overleaf
ks91
PRO
0
23
R を用いた検定(補講) (1) — Welch 検定 / Tests using R (supplementary) (1) - Welch test
ks91
PRO
0
12
R を用いた検定(補講) (2) — カイ二乗検定 / Tests using R (supplementary) (2) - Chi-squared test
ks91
PRO
0
13
Other Decks in Business
See All in Business
AWS の生成 AI 最前線 : 顧客起点のイノベーション
icoxfog417
PRO
0
1.4k
職員給与等実態調査のDX
tokyo_metropolitan_gov_digital_hr
0
410
ヘリウムリング&フープリレーアクティビティ
chibanba1982
PRO
0
110
成功をつなげる プロジェクトマネジメントの探求 / Exploring Project Management to Continuous Success
tunepolo
0
190
フォロワーシップ、ビジョン共有の重要性を学べる「部課長ゲーム」
chibanba1982
PRO
0
180
P2B Haus法人サポータープランのご提案
sotarok
2
1.1k
LayerX AI・LLM Division Deck
layerx
PRO
0
16k
会社紹介資料 | booost technologies株式会社
booost
0
4.8k
re:Infrastructure_for the NextGen AI/ML and Beyond
ichichi
0
370
CompanyDeck_v6.pdf
xid
3
17k
プロダクトオペレーション マネージャー(POM)の仕事
daiki_fukunaga
2
110
会社紹介資料 / ProfileBook
gpol
4
26k
Featured
See All Featured
Put a Button on it: Removing Barriers to Going Fast.
kastner
59
3.6k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
29
2k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
330
21k
Java REST API Framework Comparison - PWX 2021
mraible
28
8.3k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
7
540
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
3
320
The Language of Interfaces
destraynor
155
24k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
18
2.3k
Designing for Performance
lara
604
68k
Learning to Love Humans: Emotional Interface Design
aarron
274
40k
Docker and Python
trallard
43
3.2k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
666
120k
Transcript
generated by Stable Diffusion XL v1.0 2023 7 (1) (WBS)
2023 7 (1) — 2023-12 – p.1/18
https://speakerdeck.com/ks91/collections/corporate-data-analysis-2023-winter 2023 7 (1) — 2023-12 – p.2/18
( 20 ) 1 • 2 R • 3 •
4 • 5 • 6 ( ) • 7 (1) • 8 (2) 9 R ( ) (1) 10 R ( ) (2) 11 R ( ) (1) 12 R ( ) (2) 13 GPT-4 14 GPT-4 15 ( ) LaTeX Overleaf 8 (12/21 ) / (2 ) OK / 2023 7 (1) — 2023-12 – p.3/18
( ) ( ) 2023 7 (1) — 2023-12 –
p.4/18
(line chart) x y cda-demo “ -1.R” Git 1 2023
7 (1) — 2023-12 – p.5/18
“ .txt” 1 1 <- read.table(" .txt", header=T) A 4
plot( 1$ , 1$A , type="o", pch=0, ylim=c(40, 80), xaxp=c(1,4,3), ylab=" ", xlab=" ", main="A ") ‘type="o"’ ‘pch=0’ ‘xaxp=c(1,4,3)’ x 1 4 3 1.5 2023 7 (1) — 2023-12 – p.6/18
1 2 3 4 40 50 60 70 80 A⤌ࡢᖹᆒⅬࡢ᥎⛣
ᶍヨᅇ ᖹᆒⅬ 2023 7 (1) — 2023-12 – p.7/18
plot ( ) type ( ) : "p" ( )
"l" ( ) "o" ( ) "h" ( ) cf. https://r-charts.com/base-r/line-types/ (Line plot types) pch (plotting character)( ) : 0 ( ) 1 (◦) 2 (△) 3 (+) 4 (×) cf. https://r-charts.com/base-r/pch-symbols/ lty (line type)( ) : 1 ( ) 2 ( ) 3 ( ) cf. https://r-charts.com/base-r/line-types/ (Line types) lwd (line width)( ) 2023 7 (1) — 2023-12 – p.8/18
(1/2) A B plot( 1$ , 1$A , type="o", lty=1,
pch=1, col=1, ylim=c(40, 80), xaxp=c(1,4,3), ylab=" ", xlab=" ", main="A,B,C,D ") par(new=T) plot( 1$ , 1$B , type="o", lty=2, pch=2, col=2, ylim=c(40, 80), xaxp=c(1,4,3), axes=F, ann=F) ‘par(new=T)’ ( ) B plot ‘axes=F’ ‘ann=F’ ‘ylim’ ‘xaxp’ ‘lty’ ‘pch’ ‘col’ 2023 7 (1) — 2023-12 – p.9/18
(2/2) C D par(new=T) plot( 1$ , 1$C , type="o",
lty=3, pch=3, col=3, ylim=c(40, 80), xaxp=c(1,4,3), axes=F, ann=F) par(new=T) plot( 1$ , 1$D , type="o", lty=4, pch=4, col=4, ylim=c(40, 80), xaxp=c(1,4,3), axes=F, ann=F) legend("topleft", legend=names( 1)[2:5], lty=1:4, pch=1:4, col=1:4) ‘legend(. . .)’ ( top-left) 2023 7 (1) — 2023-12 – p.10/18
1 2 3 4 40 50 60 70 80 A,B,C,D⤌ࡢᖹᆒⅬࡢ᥎⛣
ᶍヨᅇ ᖹᆒⅬ A⤌ B⤌ C⤌ D⤌ 2023 7 (1) — 2023-12 – p.11/18
(radar chart) n n 0 n n 2023 7 (1)
— 2023-12 – p.12/18
(1/2) AI(GPT-4) install.packages("fmsb") library("fmsb") 2 <- read.table(" .txt", header=T) maxmin
<- data.frame( =c(7,0), =c(7,0), =c(7,0), =c(7,0), =c(7,0)) fmsb ( ) maxmin 2023 7 (1) — 2023-12 – p.13/18
(2/2) data <- rbind(maxmin, 2) radarchart(data, seg=7, centerzero=T, title="GPT-4 ")
legend("topleft", legend=c(" ", " "), lty=1:2, pch=16, col=c("black", "red")) ‘rbind(. . .)’ ‘radarchart(. . .)’ 2 3 ( 1∼ ) ‘seg=7’ 7 ‘centerzero=T’ 0 2023 7 (1) — 2023-12 – p.14/18
GPT-4 ࡼࡿே㛫ࡢᛶ᱁ࡢᨃែ ༠ㄪᛶ ㄔᐇᛶ እྥᛶ ᚰ㓄ᛶ 㛤ᨺᛶ ᨃែࡢᑐ㇟ ᨃែࡢ⤖ᯝ 2023
7 (1) — 2023-12 – p.15/18
2 barplot(as.matrix( 2), beside=T, ylim=c(0, 7), yaxp=c(1,7,6), col=c("black", "red"), density=c(25,
50), legend.text=c(" ", " "), args.legend=list(x="topleft"), main="GPT-4 ") ‘as.matrix(. . .)’ ( ) ‘args.legend’ 2023 7 (1) — 2023-12 – p.16/18
༠ㄪᛶ እྥᛶ 㛤ᨺᛶ ᨃែࡢᑐ㇟ ᨃែࡢ⤖ᯝ GPT-4 ࡼࡿே㛫ࡢᛶ᱁ࡢᨃែ 1 2 3
4 5 6 7 ㄔᐇᛶ ᚰ㓄ᛶ 2023 7 (1) — 2023-12 – p.17/18
2023 7 (1) — 2023-12 – p.18/18