Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
目つぶり検証機作成期 ~サーバーレス初心者の手始め~
Search
Kana Kitagawa
December 14, 2019
Technology
0
1.5k
目つぶり検証機作成期 ~サーバーレス初心者の手始め~
Serverless Days FukuokaでのLT登壇資料です。
Kana Kitagawa
December 14, 2019
Tweet
Share
More Decks by Kana Kitagawa
See All by Kana Kitagawa
#devreljp コミュニティネイティブな私のキャリアの築き方
ktkn1129
1
210
#CMC_Meetup コミュニティの主体がCSからマーケに変わって気づいた良さの違い
ktkn1129
0
570
コミュニティへ巻き込む人の見つけ方 ~ ヒントはインターネット上にあり? ~
ktkn1129
0
1.1k
絶対コミュニティに入った方が人生も楽しくなるのを初参加の人に伝えたい
ktkn1129
0
830
データ分析初心者が離脱しないためのModeのサポートの手厚さについて
ktkn1129
0
830
みんなでOne Teamになって良いプロダクトを作るためのチームコミュニケーションについて
ktkn1129
0
790
LINEを通じたサブスクリプション体験 ~LIFF meets Stripe~
ktkn1129
0
1.7k
イベントでのテンションを上げさせる アガる動画を作る
ktkn1129
0
340
なんやかんやで人生、無駄なことなんてない。 〜メディアアート専攻だった私が いけてる動画を作るまで〜
ktkn1129
1
1.3k
Other Decks in Technology
See All in Technology
レンジャーシステムズ | 会社紹介(採用ピッチ)
rssytems
0
150
PHP ユーザのための OpenTelemetry 入門 / phpcon2024-opentelemetry
shin1x1
1
160
alecthomas/kong はいいぞ / kamakura.go#7
fujiwara3
1
300
多領域インシデントマネジメントへの挑戦:ハードウェアとソフトウェアの融合が生む課題/Challenge to multidisciplinary incident management: Issues created by the fusion of hardware and software
bitkey
PRO
2
100
20241214_WACATE2024冬_テスト設計技法をチョット俯瞰してみよう
kzsuzuki
3
440
社内イベント管理システムを1週間でAKSからACAに移行した話し
shingo_kawahara
0
180
C++26 エラー性動作
faithandbrave
2
710
NilAway による静的解析で「10 億ドル」を節約する #kyotogo / Kyoto Go 56th
ytaka23
3
370
Microsoft Azure全冠になってみた ~アレを使い倒した者が試験を制す!?~/Obtained all Microsoft Azure certifications Those who use "that" to the full will win the exam! ?
yuj1osm
2
110
WACATE2024冬セッション資料(ユーザビリティ)
scarletplover
0
190
Qiita埋め込み用スライド
naoki_0531
0
1.3k
オプトインカメラ:UWB測位を応用したオプトイン型のカメラ計測
matthewlujp
0
170
Featured
See All Featured
Fireside Chat
paigeccino
34
3.1k
Imperfection Machines: The Place of Print at Facebook
scottboms
266
13k
Embracing the Ebb and Flow
colly
84
4.5k
The Illustrated Children's Guide to Kubernetes
chrisshort
48
48k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
251
21k
Documentation Writing (for coders)
carmenintech
66
4.5k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
28
9.1k
Automating Front-end Workflow
addyosmani
1366
200k
Intergalactic Javascript Robots from Outer Space
tanoku
270
27k
We Have a Design System, Now What?
morganepeng
51
7.3k
Statistics for Hackers
jakevdp
796
220k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
26
1.5k
Transcript
ͭͿ Γ ݕ ূ ػ ࡞ ظ ~
α ʔόʔ Ϩε ॳ ৺ ऀ ͷ ख ࢝ Ί ~ K A N A K I TA G A WA
A G E N D A • ࣗݾհ • ࠓճ
Γ͔ͨͬͨ͜ͱ • ࣮ࡍʹߦͬͨ͜ͱ • ΑΓਖ਼֬ʹ ͔ͨͬͨ͠ • ࠓճࢲ͕ݴ͍͔ͨͬͨ ͜ͱ
K A N A K I TA G A WA
• “͍͕ͨʔ”(͵Μ) ͱݺΕͯ·͢ɻ #MakikomiTiger • ؔେֶ 4ੜ (ઐ߈:ϝσΟΞΞʔτ) • དྷ4݄͔Β౦ژͰ ಇ͖࢝Ί·͢ʂ • ࣸਅͷপͷຽ
F I L M P H O T O G
R A P H Y
D I G I TA L P H O T
O G R A P H Y 20202݄8.9ʹେࡕͰೋਓͰࣸਅలΛ͠·͢ɻ
B E F O R E A F T E
R Shooting & Retouch ΞΠίϯࡱӨͷ͝ґཔҾ͖ड͚·͢ͷͰ͓ؾܰʹɻ
ࠓ ճ Γ ͨ ͔ ͬ ͨ ͜
ͱ
None
ͭͿ Γ ݕ ূ ࡞ ظ ~ α
ʔόʔ Ϩε ॳ ৺ ऀ ͷ ख ࢝ Ί ~ K A N A K I TA G A WA
લ ճ ฉ ͍ͯ͘ ͩ ͞ ͬ ͨ ํ ʂ
P H O T O S × S E R
V E R L E S S … ?
ͦ ͷ લ ʹ ɾ ɾ ɾ
ࢲ ͷ ࣸ ਅ ͷ Ϩ λ ο ν ͷ
ख ॱ 1.ࣸਅΛLightroomܦ༝ͰϩʔΧϧʹऔΓࠐΉɻ 2.Λᛉ͍ͬͯΔࣸਅɺϐϯϙέͷࣸਅҎ֎Λ ϨʔςΟϯάɻ 3.ͦͷճͷϨλονͷϕʔεͱͳΔ৭ຯͰҰຕϨλονɻ 4.ϨʔςΟϯάͨ͠ͷʹઌ΄ͲͷઃఆΛϖʔετɺ֤ʑΛ ඍௐɻ͞Βʹબผ͠ɺϨʔςΟϯάɻ 5.બΜͩͷ͚ͩΛॻ͖ग़͠ɻ
ࢲ ͷ ࣸ ਅ ͷ Ϩ λ ο ν ͷ
ख ॱ 1.ࣸਅΛLightroomʹऔΓࠐΉɻ 2.Λᛉ͍ͬͯΔࣸਅɺϐϯϙέͷࣸਅҎ֎Λ ϨʔςΟϯάɻ 3.ࠓճͷϨλονͷϕʔεͱͳΔ৭ຯͰҰຕϨλονɻ 4.ϨʔςΟϯάͨ͠ͷʹઌ΄ͲͷઃఆΛϖʔετɺ֤ʑΛඍௐɻ͞Βʹબ ผ͠ɺϨʔςΟϯάɻ 5.બΜͩͷ͚ͩΛॻ͖ग़͠ɻ ҙ֎ͱ͕࣌ؒऔΒΕΔɻ
1 0 0 ຕ ΄ Ͳ ࡱ ͬͯ ࣮
ࡍ ͑Δ ͷ 5 0 ຕ ΄ Ͳ ɻ બ ผ ͢ Β ͯ͠ ͳ ͍ ͷ ͕ 2 0 0 0 ຕ ͘ Β ͍ ͋ Δ ɻ
Ϩ λ ο ν ྗ ͢ Δ ͨ
Ί ʹ अ ຐ ͳ ࣌ ؒ ল ͖ ͨ ͍ ɻ
Amazon Rekognition
A M A Z O N R E K O
G N I T I O N ͱ ʁ • ը૾ɺಈըͷੳπʔϧ • ΦϒδΣΫτɺγʔϯɺإͷݕग़ɺ ςΩετͷநग़ɺ༗໊ਓͷೝࣝɺը૾ ͷෆదͳίϯςϯπͷࣝผ͕Մೳ
إ ੳ
إ ੳ Ͱ ೝ ࣝ Ͱ ͖ Δ ͜
ͱ • স͍ͬͯΔ͔Ͳ͏͔ • ಏ͕։͍͍ͯΔ͔Ͳ͏͔ • ޱ͕։͍͍ͯΔ͔Ͳ͏͔ • ײ ͳͲɻ
إ ੳ Ͱ ೝ ࣝ Ͱ ͖ Δ ͜
ͱ • স͍ͬͯΔ͔Ͳ͏͔ •ಏ͕։͍͍ͯΔ͔Ͳ͏͔ • ޱ͕։͍͍ͯΔ͔Ͳ͏͔ • ײ ͳͲɻ
ཧ 1.Amazon S3ʹࡱӨͨ͠ૉࡐΛೖΕΔ 2.Amazon S3ͷը૾ͷΞοϓϩʔυΛτϦΨʔʹAmazon RekognitionΛୟ͘ 3.Amazon RekognitionͰإೝࣝ 4.ᛉΓ͍ͯ͠ͳ͍ը૾ΛϦετԽ
5.ϦετͰࢦఆ͞Ε͍ͯΔը૾ΛผͷS3όέοτʹҠಈ 6.ϦετͰදࣔ
࣮ ࡍ ʹ ߦ ͬ ͨ ͜ ͱ
Δ ͜ ͱ ͷ ཧ 1.إੳΛ௨͢લɺ௨ͨ͠ޙͷը૾ΛೖΕΔS3όέοτΛ ࡞͢Δ 2.Amazon
S3ʹΞοϓϩʔυ͞Εͨ͜ͱΛAWS LambdaͰ ݕ͢Δ 3.AWS Lambda͕Ξοϓϩʔυ͞ΕͨϑΝΠϧΛAmazon Rekognitionʹ͛ͯإੳॲཧΛߦ͏ 4.إੳͷ݁Ռɺͷۭ͍͍ͯΔը૾Λ௨ͨ͠ޙͷS3 όέοτʹίϐʔ
Serverless Framework
S E R V E R L E S S
F R A M E W O R K ͱ ʁ • Serverless ApplicationΛߏཧɺσϓϩΠ͢ΔͨΊ ͷπʔϧ • ίϛϡχςΟυϦϒϯͰ։ൃ͕ߦΘΕ͍ͯΔ • ຊޠϑΥʔϥϜ͋Γɻ https://github.com/serverless-japan/forum
https://qiita.com/horike37/items/b295a91908fcfd4033a2
Amazon Rekognition × AWS Lambda
P H O T O S × S E R
V E R L E S S … !
ੈ ͷ த ʹ ༷ ʑ ͳ σ ʔ
λ ܗ ࣜ ͕ ͋ Γ · ͢ɻ
A M A Z O N R E K O
G N I T I O N ͷ ҙ • ೝࣝͰ͖Δσʔλ JPGɺ PNGͷΈ
Ұ R A W σ ʔ λ Λ J
P G ʹ ॻ ͖ ͑ ͳ ͚ Ε إ ೝ ࣝ ͑ ͳ ͍ ɾ ɾ ɾ ʁ
࣍ ճ ͷ ՝ લճ·Ͱͷ͓
ࠓ ͕ ࣍ ճ ͩ ʂ
1.SDΧʔυ͔ΒσʔλΛίϐʔ ϑΥϧμʹ֨ೲ 2.ͦͷσʔλΛRAW͔ΒJPGʹม 3.มͨ͠ϑΝΠϧ͚ͩΛผϑΥϧμʹ Ҡಈ 4.S3ʹΞοϓϩʔυ
P Y T H O N L I B R
A RY • RAWPy • rawσʔλΛಡΈࠐΈ • ύϥϝʔλ͕ଟ͘ɺ͍͍ײ͡ʹউखʹϨλον͞ΕΔ • imageio • jpegʹม
None
ݩσʔλ rawpyޙͷσʔλ ᛉΓݕূ͞ΕͨΒ͍͍ͷͰؔͳ͍͚Ͳ ͬͱͬͯΈͨ͘ͳΔϥΠϒϥϦ
͍ Α ͍ Α … ᛉ Γ ݕ ূ
ػ ͷ ࡞
։ ൃ ڥ • Serverless Framework • Python 3.7
None
•handler.py •serverless.yml
S E R V E R L E S S
. Y M L Λ ฤ ू ͢ Δ
S E R V E R L E S S
. Y M L Λ ฤ ू ͢ Δ • AWS S3ͷΞΫηε • Amazon RekognitionͷΞΫηε • ϦιʔεʹAWS S3Λઃఆ͢Δ
H A N D L E R . P Y
Λ ฤ ू ͢ Δ
H A N D L E R . P Y
Λ ฤ ू ͢ Δ • S3όέοτͷதΛಡΈऔΔ • Amazon Rekognitionʹ͛Δ • ͕։͍͍ͯΔ͔Ͳ͏͔ผ͢Δ • EyesOpen=True • ։͍͍ͯΔͷ͚ͩɺผͷόέοτʹೖΕΔ
7 7 2 ຕ ͷ બ ผ ͕ 1 0
ʂ
Α Γ ਖ਼ ֬ ͳ ͷ Λ ࡞ Γ
ͨ ͍
E Y E S A R E C L O
S E D .
E Y E S A R E C L O
S E D … ? ? ?
ͷ ։ ͍ͯ ͍ Δ ׂ ߹ Λ
ͬ ͱ ࡉ ͔ ͘ ઃ ఆ ͠ ͠ ͨ ͍ ɻ
ׂ ߹ ܾ Ί Α ͏ ͱ ࢥ ͍ ɺ
σ Ϟ Λ ͯ͠ Έ ͨ ɻ
None
None
None
None
None
None
N O T S M I L I N G
…
None
None
None
E Y E S A R E C L O
S E D
None
None
None
࣌ ʑ ى ͜ Δ ϗ ϥ ʔ ݱ
ɻ
ઃ ఆ ͕ܾΊΒΕͳ͍ɾɾɾ
Χ ϯ ϑ Ν Ϩϯε ͷ Ϩ λ ο ν
ʹ ͑Δ ɾ ɾ ɾ ʁ ࡞੍࡞ʹΩπΠͷ͕͋Δ͔…
ࠓ ճ ࢲ ͕ ݴ ͍ ͨ ͔ ͬ ͨ
͜ ͱ
• ͖ͳ͜ͱʹٕज़ΛབྷΊΔͷͬͯ ͬͺΓͨͷ͍͠ɻ
T H A N K Y O U F O
R L I S T E N I N G ! ! ! @nun_is_tiger Kana Kitagawa ͱΓ͋͑ͣMakikomi Tigerͬͯௐ͍ͯͩ͘͞ɻ