Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
[ACM-ICPC] Minimum Cut
Search
KuoE0
January 21, 2013
Programming
2
100
[ACM-ICPC] Minimum Cut
KuoE0
January 21, 2013
Tweet
Share
More Decks by KuoE0
See All by KuoE0
Protocol handler in Gecko
kuoe0
0
89
面試面試面試,因為很重要所以要說三次!
kuoe0
2
230
應徵軟體工程師
kuoe0
0
160
面試心得分享
kuoe0
0
400
Windows 真的不好用...
kuoe0
0
270
Python @Wheel Lab
kuoe0
0
200
Introduction to VP8
kuoe0
0
230
Python @NCKU_CSIE
kuoe0
0
110
[ACM-ICPC] Tree Isomorphism
kuoe0
1
240
Other Decks in Programming
See All in Programming
20250429 - CNTUG Meetup #67 / DevOps Taiwan Meetup #69 - Deep Dive into Tetragon: Building Runtime Security and Observability with eBPF
tico88612
0
140
ウォンテッドリーの「ココロオドル」モバイル開発 / Wantedly's "kokoro odoru" mobile development
kubode
1
220
ComposeでWebアプリを作る技術
tbsten
0
120
RubyKaigi Dev Meeting 2025
tenderlove
1
680
Optimizing JRuby 10
headius
0
510
State of Namespace
tagomoris
5
2.2k
Exit 8 for SwiftUI
ojun9
0
150
複雑なフォームの jotai 設計 / Designing jotai(state) for Complex Forms #layerx_frontend
izumin5210
5
1.3k
KANNA Android の技術的課題と取り組み
watabee
0
150
AIコーディングエージェントを 「使いこなす」ための実践知と現在地 in ログラス / How to Use AI Coding Agent in Loglass
rkaga
4
1k
一緒に働きたくなるプログラマの思想 #QiitaConference
mu_zaru
77
19k
Fiber Scheduler vs. General-Purpose Parallel Client
hayaokimura
1
220
Featured
See All Featured
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
178
53k
Facilitating Awesome Meetings
lara
54
6.3k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
119
51k
The Pragmatic Product Professional
lauravandoore
33
6.6k
The Cost Of JavaScript in 2023
addyosmani
49
7.7k
For a Future-Friendly Web
brad_frost
177
9.7k
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.2k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
667
120k
How To Stay Up To Date on Web Technology
chriscoyier
790
250k
Rebuilding a faster, lazier Slack
samanthasiow
81
8.9k
Designing for Performance
lara
608
69k
Imperfection Machines: The Place of Print at Facebook
scottboms
267
13k
Transcript
Minimum Cut ֲࢸݢʢKuoE0ʣ KuoE0.tw@gmail.com KuoE0.ch
Cut
cut (undirected)
1 3 5 6 7 8 9 2 4 undirected
graph A partition of the vertices of a graph into two disjoint subsets
1 3 5 6 7 8 9 2 4 undirected
graph A partition of the vertices of a graph into two disjoint subsets
1 3 5 6 7 8 9 2 4 undirected
graph A partition of the vertices of a graph into two disjoint subsets
1 2 8 5 4 7 9 3 6 A
partition of the vertices of a graph into two disjoint subsets undirected graph
1 2 8 5 4 7 9 3 6 Cut-set
of the cut is the set of edges whose end points are in different subsets. undirected graph
1 2 8 5 4 7 9 3 6 Cut-set
of the cut is the set of edges whose end points are in different subsets. Cut-set undirected graph
1 2 8 5 4 7 9 3 6 weight
= number of edges or sum of weight on edges weight is 7 undirected graph
cut (directed)
1 3 5 6 7 8 9 2 4 directed
graph A partition of the vertices of a graph into two disjoint subsets
1 3 5 6 7 8 9 2 4 directed
graph A partition of the vertices of a graph into two disjoint subsets
1 3 5 6 7 8 9 2 4 directed
graph A partition of the vertices of a graph into two disjoint subsets
1 2 8 5 4 7 9 3 6 directed
graph A partition of the vertices of a graph into two disjoint subsets
1 2 8 5 4 7 9 3 6 directed
graph Cut-set of the cut is the set of edges whose end points are in different subsets.
1 2 8 5 4 7 9 3 6 directed
graph Cut-set of the cut is the set of edges whose end points are in different subsets.
1 2 8 5 4 7 9 3 6 Cut-set
directed graph Cut-set of the cut is the set of edges whose end points are in different subsets.
1 2 8 5 4 7 9 3 6 weight
is 5⇢ or 2⇠ directed graph weight = number of edges or sum of weight on edges
s-t cut 1. one side is source 2. another side
is sink 3. cut-set only consists of edges going from source’s side to sink’s side
1 3 5 6 7 8 9 2 4 flow
network Source Sink Other
1 3 5 6 7 8 9 2 4 flow
network Source Sink
1 3 5 6 7 8 9 2 4 flow
network Source Sink
1 2 8 5 4 7 9 3 6 flow
network cut-set only consists of edges going from source’s side to sink’s side
1 2 8 5 4 7 9 3 6 weight
is 6 flow network cut-set only consists of edges going from source’s side to sink’s side
Max-Flow Min-Cut Theorem
Observation 1 The network flow sent across any cut is
equal to the amount reaching sink. 1 3 2 4 5 6 3/3 3/8 4/4 2/2 1/4 4/4 2/3 total flow = 6, flow on cut = 3 + 3 = 6
Observation 1 The network flow sent across any cut is
equal to the amount reaching sink. 1 3 2 4 5 6 3/3 3/8 4/4 2/2 1/4 4/4 2/3 total flow = 6, flow on cut = 3 + 3 = 6
Observation 1 The network flow sent across any cut is
equal to the amount reaching sink. 1 3 2 4 5 6 3/3 3/8 4/4 2/2 1/4 4/4 2/3 total flow = 6, flow on cut = 3 + 4 - 1 = 6
Observation 1 The network flow sent across any cut is
equal to the amount reaching sink. 1 3 2 4 5 6 3/3 3/8 4/4 2/2 1/4 4/4 2/3 total flow = 6, flow on cut = 3 + 4 - 1 = 6
Observation 1 The network flow sent across any cut is
equal to the amount reaching sink. 1 3 2 4 5 6 3/3 3/8 4/4 2/2 1/4 4/4 2/3 total flow = 6, flow on cut = 4 + 2= 6
Observation 1 The network flow sent across any cut is
equal to the amount reaching sink. 1 3 2 4 5 6 3/3 3/8 4/4 2/2 1/4 4/4 2/3 total flow = 6, flow on cut = 4 + 2= 6
Observation 1 The network flow sent across any cut is
equal to the amount reaching sink. 1 3 2 4 5 6 3/3 3/8 4/4 2/2 1/4 4/4 2/3 total flow = 6, flow on cut = 4 + 2= 6
Observation 1 The network flow sent across any cut is
equal to the amount reaching sink. 1 3 2 4 5 6 3/3 3/8 4/4 2/2 1/4 4/4 2/3 total flow = 6, flow on cut = 4 + 2= 6
Observation 2 Then the value of the flow is at
most the capacity of any cut. 1 3 2 4 5 6 3 8 4 2 4 4 3 It’s trivial!
Observation 2 Then the value of the flow is at
most the capacity of any cut. 1 3 2 4 5 6 3 8 4 2 4 4 3 It’s trivial!
Observation 3 Let f be a flow, and let (S,T)
be an s-t cut whose capacity equals the value of f. 1 3 2 4 5 6 3/3 3/8 4/4 2/2 1/4 4/4 2/3 f is the maximum flow (S,T) is the minimum cut
Observation 3 Let f be a flow, and let (S,T)
be an s-t cut whose capacity equals the value of f. 1 3 2 4 5 6 3/3 3/8 4/4 2/2 1/4 4/4 2/3 f is the maximum flow (S,T) is the minimum cut
Max-Flow EQUAL Min-Cut
Example
1 3 2 4 5 6 3 8 4 2
4 4 3
1 3 2 4 5 6 3/3 3/8 4/4 2/2
1/4 4/4 2/3 Maximum Flow = 6
1 3 2 4 5 6 0/3 5/8 0/4 0/2
3/4 0/4 1/3 Residual Network
1 3 2 4 5 6 0/3 5/8 0/4 0/2
3/4 0/4 1/3 Minimum Cut = 6
1 3 2 4 5 6 0/3 5/8 0/4 0/2
3/4 0/4 1/3 Minimum Cut = 6
1 3 2 4 5 6 0/3 5/8 0/4 0/2
3/4 0/4 1/3 Minimum Cut = 6
1 3 2 4 5 6 0/3 5/8 0/4 0/2
3/4 0/4 1/3 Minimum Cut = 6
The minimum capacity limit the maximum flow!
find a s-t cut
1 3 2 4 5 6 3/3 3/8 4/4 2/2
1/4 4/4 2/3 Maximum Flow = 6
1 3 2 4 5 6 0/3 5/8 0/4 0/2
3/4 0/4 1/3 Travel on Residual Network
1 3 2 4 5 6 0/3 5/8 0/4 0/2
3/4 0/4 1/3 start from source
1 3 2 4 5 6 0/3 5/8 0/4 0/2
3/4 0/4 1/3 don’t travel through full edge
1 3 2 4 5 6 0/3 5/8 0/4 0/2
3/4 0/4 1/3 don’t travel through full edge
1 3 2 4 5 6 0/3 5/8 0/4 0/2
3/4 0/4 1/3 no residual edge
1 3 2 4 5 6 0/3 5/8 0/4 0/2
3/4 0/4 1/3 no residual edge
1 3 2 4 5 6 0/3 5/8 0/4 0/2
3/4 0/4 1/3 s-t cut
1 3 2 4 5 6 0/3 5/8 0/4 0/2
3/4 0/4 1/3 s-t cut
result of starting from sink 1 3 2 4 5
6 0/3 5/8 0/4 0/2 3/4 0/4 1/3
result of starting from sink 1 3 2 4 5
6 0/3 5/8 0/4 0/2 3/4 0/4 1/3
Minimum cut is non-unique!
time complexity: based on max-flow algorithm Ford-Fulkerson algorithm O(EF) Edmonds-Karp
algorithm O(VE2) Dinic algorithm O(V2E)
Stoer Wagner only for undirected graph time complexity: O(N3) or
O(N2log2N)
UVa 10480 - Sabotage Practice Now
Problem List UVa 10480 UVa 10989 POJ 1815 POJ 2914
POJ 3084 POJ 3308 POJ 3469
Reference • http://www.flickr.com/photos/dgjones/335788038/ • http://www.flickr.com/photos/njsouthall/3181945005/ • http://www.csie.ntnu.edu.tw/~u91029/Cut.html • http://en.wikipedia.org/wiki/Cut_(graph_theory) •
http://en.wikipedia.org/wiki/Max-flow_min-cut_theorem • http://www.cs.princeton.edu/courses/archive/spr04/cos226/lectures/ maxflow.4up.pdf • http://www.cnblogs.com/scau20110726/archive/ 2012/11/27/2791523.html
Thank You for Your Listening.