Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
[ACM-ICPC] Minimum Cut
Search
KuoE0
January 21, 2013
Programming
2
110
[ACM-ICPC] Minimum Cut
KuoE0
January 21, 2013
Tweet
Share
More Decks by KuoE0
See All by KuoE0
Protocol handler in Gecko
kuoe0
0
100
面試面試面試,因為很重要所以要說三次!
kuoe0
2
270
應徵軟體工程師
kuoe0
0
180
面試心得分享
kuoe0
0
420
Windows 真的不好用...
kuoe0
0
300
Python @Wheel Lab
kuoe0
0
220
Introduction to VP8
kuoe0
0
260
Python @NCKU_CSIE
kuoe0
0
130
[ACM-ICPC] Tree Isomorphism
kuoe0
1
260
Other Decks in Programming
See All in Programming
ゆくKotlin くるRust
exoego
1
110
Go コードベースの構成と AI コンテキスト定義
andpad
0
130
Deno Tunnel を使ってみた話
kamekyame
0
160
tsgolintはいかにしてtypescript-goの非公開APIを呼び出しているのか
syumai
7
2.3k
モデル駆動設計をやってみようワークショップ開催報告(Modeling Forum2025) / model driven design workshop report
haru860
0
280
【Streamlit x Snowflake】データ基盤からアプリ開発・AI活用まで、すべてをSnowflake内で実現
ayumu_yamaguchi
1
120
堅牢なフロントエンドテスト基盤を構築するために行った取り組み
shogo4131
8
2.4k
UIデザインに役立つ 2025年の最新CSS / The Latest CSS for UI Design 2025
clockmaker
18
7.6k
バックエンドエンジニアによる Amebaブログ K8s 基盤への CronJobの導入・運用経験
sunabig
0
170
令和最新版Android Studioで化石デバイス向けアプリを作る
arkw
0
420
著者と進める!『AIと個人開発したくなったらまずCursorで要件定義だ!』
yasunacoffee
0
150
TUIライブラリつくってみた / i-just-make-TUI-library
kazto
1
400
Featured
See All Featured
Lightning talk: Run Django tests with GitHub Actions
sabderemane
0
87
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
231
22k
State of Search Keynote: SEO is Dead Long Live SEO
ryanjones
0
62
Reality Check: Gamification 10 Years Later
codingconduct
0
1.9k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
25
1.7k
Fashionably flexible responsive web design (full day workshop)
malarkey
407
66k
Un-Boring Meetings
codingconduct
0
160
Statistics for Hackers
jakevdp
799
230k
Discover your Explorer Soul
emna__ayadi
2
1k
Data-driven link building: lessons from a $708K investment (BrightonSEO talk)
szymonslowik
0
840
The Illustrated Children's Guide to Kubernetes
chrisshort
51
51k
What Being in a Rock Band Can Teach Us About Real World SEO
427marketing
0
140
Transcript
Minimum Cut ֲࢸݢʢKuoE0ʣ
[email protected]
KuoE0.ch
Cut
cut (undirected)
1 3 5 6 7 8 9 2 4 undirected
graph A partition of the vertices of a graph into two disjoint subsets
1 3 5 6 7 8 9 2 4 undirected
graph A partition of the vertices of a graph into two disjoint subsets
1 3 5 6 7 8 9 2 4 undirected
graph A partition of the vertices of a graph into two disjoint subsets
1 2 8 5 4 7 9 3 6 A
partition of the vertices of a graph into two disjoint subsets undirected graph
1 2 8 5 4 7 9 3 6 Cut-set
of the cut is the set of edges whose end points are in different subsets. undirected graph
1 2 8 5 4 7 9 3 6 Cut-set
of the cut is the set of edges whose end points are in different subsets. Cut-set undirected graph
1 2 8 5 4 7 9 3 6 weight
= number of edges or sum of weight on edges weight is 7 undirected graph
cut (directed)
1 3 5 6 7 8 9 2 4 directed
graph A partition of the vertices of a graph into two disjoint subsets
1 3 5 6 7 8 9 2 4 directed
graph A partition of the vertices of a graph into two disjoint subsets
1 3 5 6 7 8 9 2 4 directed
graph A partition of the vertices of a graph into two disjoint subsets
1 2 8 5 4 7 9 3 6 directed
graph A partition of the vertices of a graph into two disjoint subsets
1 2 8 5 4 7 9 3 6 directed
graph Cut-set of the cut is the set of edges whose end points are in different subsets.
1 2 8 5 4 7 9 3 6 directed
graph Cut-set of the cut is the set of edges whose end points are in different subsets.
1 2 8 5 4 7 9 3 6 Cut-set
directed graph Cut-set of the cut is the set of edges whose end points are in different subsets.
1 2 8 5 4 7 9 3 6 weight
is 5⇢ or 2⇠ directed graph weight = number of edges or sum of weight on edges
s-t cut 1. one side is source 2. another side
is sink 3. cut-set only consists of edges going from source’s side to sink’s side
1 3 5 6 7 8 9 2 4 flow
network Source Sink Other
1 3 5 6 7 8 9 2 4 flow
network Source Sink
1 3 5 6 7 8 9 2 4 flow
network Source Sink
1 2 8 5 4 7 9 3 6 flow
network cut-set only consists of edges going from source’s side to sink’s side
1 2 8 5 4 7 9 3 6 weight
is 6 flow network cut-set only consists of edges going from source’s side to sink’s side
Max-Flow Min-Cut Theorem
Observation 1 The network flow sent across any cut is
equal to the amount reaching sink. 1 3 2 4 5 6 3/3 3/8 4/4 2/2 1/4 4/4 2/3 total flow = 6, flow on cut = 3 + 3 = 6
Observation 1 The network flow sent across any cut is
equal to the amount reaching sink. 1 3 2 4 5 6 3/3 3/8 4/4 2/2 1/4 4/4 2/3 total flow = 6, flow on cut = 3 + 3 = 6
Observation 1 The network flow sent across any cut is
equal to the amount reaching sink. 1 3 2 4 5 6 3/3 3/8 4/4 2/2 1/4 4/4 2/3 total flow = 6, flow on cut = 3 + 4 - 1 = 6
Observation 1 The network flow sent across any cut is
equal to the amount reaching sink. 1 3 2 4 5 6 3/3 3/8 4/4 2/2 1/4 4/4 2/3 total flow = 6, flow on cut = 3 + 4 - 1 = 6
Observation 1 The network flow sent across any cut is
equal to the amount reaching sink. 1 3 2 4 5 6 3/3 3/8 4/4 2/2 1/4 4/4 2/3 total flow = 6, flow on cut = 4 + 2= 6
Observation 1 The network flow sent across any cut is
equal to the amount reaching sink. 1 3 2 4 5 6 3/3 3/8 4/4 2/2 1/4 4/4 2/3 total flow = 6, flow on cut = 4 + 2= 6
Observation 1 The network flow sent across any cut is
equal to the amount reaching sink. 1 3 2 4 5 6 3/3 3/8 4/4 2/2 1/4 4/4 2/3 total flow = 6, flow on cut = 4 + 2= 6
Observation 1 The network flow sent across any cut is
equal to the amount reaching sink. 1 3 2 4 5 6 3/3 3/8 4/4 2/2 1/4 4/4 2/3 total flow = 6, flow on cut = 4 + 2= 6
Observation 2 Then the value of the flow is at
most the capacity of any cut. 1 3 2 4 5 6 3 8 4 2 4 4 3 It’s trivial!
Observation 2 Then the value of the flow is at
most the capacity of any cut. 1 3 2 4 5 6 3 8 4 2 4 4 3 It’s trivial!
Observation 3 Let f be a flow, and let (S,T)
be an s-t cut whose capacity equals the value of f. 1 3 2 4 5 6 3/3 3/8 4/4 2/2 1/4 4/4 2/3 f is the maximum flow (S,T) is the minimum cut
Observation 3 Let f be a flow, and let (S,T)
be an s-t cut whose capacity equals the value of f. 1 3 2 4 5 6 3/3 3/8 4/4 2/2 1/4 4/4 2/3 f is the maximum flow (S,T) is the minimum cut
Max-Flow EQUAL Min-Cut
Example
1 3 2 4 5 6 3 8 4 2
4 4 3
1 3 2 4 5 6 3/3 3/8 4/4 2/2
1/4 4/4 2/3 Maximum Flow = 6
1 3 2 4 5 6 0/3 5/8 0/4 0/2
3/4 0/4 1/3 Residual Network
1 3 2 4 5 6 0/3 5/8 0/4 0/2
3/4 0/4 1/3 Minimum Cut = 6
1 3 2 4 5 6 0/3 5/8 0/4 0/2
3/4 0/4 1/3 Minimum Cut = 6
1 3 2 4 5 6 0/3 5/8 0/4 0/2
3/4 0/4 1/3 Minimum Cut = 6
1 3 2 4 5 6 0/3 5/8 0/4 0/2
3/4 0/4 1/3 Minimum Cut = 6
The minimum capacity limit the maximum flow!
find a s-t cut
1 3 2 4 5 6 3/3 3/8 4/4 2/2
1/4 4/4 2/3 Maximum Flow = 6
1 3 2 4 5 6 0/3 5/8 0/4 0/2
3/4 0/4 1/3 Travel on Residual Network
1 3 2 4 5 6 0/3 5/8 0/4 0/2
3/4 0/4 1/3 start from source
1 3 2 4 5 6 0/3 5/8 0/4 0/2
3/4 0/4 1/3 don’t travel through full edge
1 3 2 4 5 6 0/3 5/8 0/4 0/2
3/4 0/4 1/3 don’t travel through full edge
1 3 2 4 5 6 0/3 5/8 0/4 0/2
3/4 0/4 1/3 no residual edge
1 3 2 4 5 6 0/3 5/8 0/4 0/2
3/4 0/4 1/3 no residual edge
1 3 2 4 5 6 0/3 5/8 0/4 0/2
3/4 0/4 1/3 s-t cut
1 3 2 4 5 6 0/3 5/8 0/4 0/2
3/4 0/4 1/3 s-t cut
result of starting from sink 1 3 2 4 5
6 0/3 5/8 0/4 0/2 3/4 0/4 1/3
result of starting from sink 1 3 2 4 5
6 0/3 5/8 0/4 0/2 3/4 0/4 1/3
Minimum cut is non-unique!
time complexity: based on max-flow algorithm Ford-Fulkerson algorithm O(EF) Edmonds-Karp
algorithm O(VE2) Dinic algorithm O(V2E)
Stoer Wagner only for undirected graph time complexity: O(N3) or
O(N2log2N)
UVa 10480 - Sabotage Practice Now
Problem List UVa 10480 UVa 10989 POJ 1815 POJ 2914
POJ 3084 POJ 3308 POJ 3469
Reference • http://www.flickr.com/photos/dgjones/335788038/ • http://www.flickr.com/photos/njsouthall/3181945005/ • http://www.csie.ntnu.edu.tw/~u91029/Cut.html • http://en.wikipedia.org/wiki/Cut_(graph_theory) •
http://en.wikipedia.org/wiki/Max-flow_min-cut_theorem • http://www.cs.princeton.edu/courses/archive/spr04/cos226/lectures/ maxflow.4up.pdf • http://www.cnblogs.com/scau20110726/archive/ 2012/11/27/2791523.html
Thank You for Your Listening.