Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
[ACM-ICPC] Minimum Cut
Search
KuoE0
January 21, 2013
Programming
2
100
[ACM-ICPC] Minimum Cut
KuoE0
January 21, 2013
Tweet
Share
More Decks by KuoE0
See All by KuoE0
Protocol handler in Gecko
kuoe0
0
99
面試面試面試,因為很重要所以要說三次!
kuoe0
2
250
應徵軟體工程師
kuoe0
0
170
面試心得分享
kuoe0
0
410
Windows 真的不好用...
kuoe0
0
290
Python @Wheel Lab
kuoe0
0
210
Introduction to VP8
kuoe0
0
250
Python @NCKU_CSIE
kuoe0
0
120
[ACM-ICPC] Tree Isomorphism
kuoe0
1
250
Other Decks in Programming
See All in Programming
ProxyによるWindow間RPC機構の構築
syumai
3
1.2k
そのAPI、誰のため? Androidライブラリ設計における利用者目線の実践テクニック
mkeeda
2
1.8k
Updates on MLS on Ruby (and maybe more)
sylph01
1
180
CJK and Unicode From a PHP Committer
youkidearitai
PRO
0
110
はじめてのMaterial3 Expressive
ym223
2
880
デザイナーが Androidエンジニアに 挑戦してみた
874wokiite
0
540
Azure SRE Agentで運用は楽になるのか?
kkamegawa
0
2.4k
AIでLINEスタンプを作ってみた
eycjur
1
230
アルテニア コンサル/ITエンジニア向け 採用ピッチ資料
altenir
0
110
Android 16 × Jetpack Composeで縦書きテキストエディタを作ろう / Vertical Text Editor with Compose on Android 16
cc4966
2
260
@Environment(\.keyPath)那么好我不允许你们不知道! / atEnvironment keyPath is so good and you should know it!
lovee
0
120
個人開発で徳島大学生60%以上の心を掴んだアプリ、そして手放した話
akidon0000
1
120
Featured
See All Featured
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
507
140k
The Straight Up "How To Draw Better" Workshop
denniskardys
236
140k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
9
810
Building an army of robots
kneath
306
46k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
18
1.1k
Writing Fast Ruby
sferik
628
62k
Why You Should Never Use an ORM
jnunemaker
PRO
59
9.5k
Typedesign – Prime Four
hannesfritz
42
2.8k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
52
5.6k
Rebuilding a faster, lazier Slack
samanthasiow
83
9.2k
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
4k
Fantastic passwords and where to find them - at NoRuKo
philnash
52
3.4k
Transcript
Minimum Cut ֲࢸݢʢKuoE0ʣ
[email protected]
KuoE0.ch
Cut
cut (undirected)
1 3 5 6 7 8 9 2 4 undirected
graph A partition of the vertices of a graph into two disjoint subsets
1 3 5 6 7 8 9 2 4 undirected
graph A partition of the vertices of a graph into two disjoint subsets
1 3 5 6 7 8 9 2 4 undirected
graph A partition of the vertices of a graph into two disjoint subsets
1 2 8 5 4 7 9 3 6 A
partition of the vertices of a graph into two disjoint subsets undirected graph
1 2 8 5 4 7 9 3 6 Cut-set
of the cut is the set of edges whose end points are in different subsets. undirected graph
1 2 8 5 4 7 9 3 6 Cut-set
of the cut is the set of edges whose end points are in different subsets. Cut-set undirected graph
1 2 8 5 4 7 9 3 6 weight
= number of edges or sum of weight on edges weight is 7 undirected graph
cut (directed)
1 3 5 6 7 8 9 2 4 directed
graph A partition of the vertices of a graph into two disjoint subsets
1 3 5 6 7 8 9 2 4 directed
graph A partition of the vertices of a graph into two disjoint subsets
1 3 5 6 7 8 9 2 4 directed
graph A partition of the vertices of a graph into two disjoint subsets
1 2 8 5 4 7 9 3 6 directed
graph A partition of the vertices of a graph into two disjoint subsets
1 2 8 5 4 7 9 3 6 directed
graph Cut-set of the cut is the set of edges whose end points are in different subsets.
1 2 8 5 4 7 9 3 6 directed
graph Cut-set of the cut is the set of edges whose end points are in different subsets.
1 2 8 5 4 7 9 3 6 Cut-set
directed graph Cut-set of the cut is the set of edges whose end points are in different subsets.
1 2 8 5 4 7 9 3 6 weight
is 5⇢ or 2⇠ directed graph weight = number of edges or sum of weight on edges
s-t cut 1. one side is source 2. another side
is sink 3. cut-set only consists of edges going from source’s side to sink’s side
1 3 5 6 7 8 9 2 4 flow
network Source Sink Other
1 3 5 6 7 8 9 2 4 flow
network Source Sink
1 3 5 6 7 8 9 2 4 flow
network Source Sink
1 2 8 5 4 7 9 3 6 flow
network cut-set only consists of edges going from source’s side to sink’s side
1 2 8 5 4 7 9 3 6 weight
is 6 flow network cut-set only consists of edges going from source’s side to sink’s side
Max-Flow Min-Cut Theorem
Observation 1 The network flow sent across any cut is
equal to the amount reaching sink. 1 3 2 4 5 6 3/3 3/8 4/4 2/2 1/4 4/4 2/3 total flow = 6, flow on cut = 3 + 3 = 6
Observation 1 The network flow sent across any cut is
equal to the amount reaching sink. 1 3 2 4 5 6 3/3 3/8 4/4 2/2 1/4 4/4 2/3 total flow = 6, flow on cut = 3 + 3 = 6
Observation 1 The network flow sent across any cut is
equal to the amount reaching sink. 1 3 2 4 5 6 3/3 3/8 4/4 2/2 1/4 4/4 2/3 total flow = 6, flow on cut = 3 + 4 - 1 = 6
Observation 1 The network flow sent across any cut is
equal to the amount reaching sink. 1 3 2 4 5 6 3/3 3/8 4/4 2/2 1/4 4/4 2/3 total flow = 6, flow on cut = 3 + 4 - 1 = 6
Observation 1 The network flow sent across any cut is
equal to the amount reaching sink. 1 3 2 4 5 6 3/3 3/8 4/4 2/2 1/4 4/4 2/3 total flow = 6, flow on cut = 4 + 2= 6
Observation 1 The network flow sent across any cut is
equal to the amount reaching sink. 1 3 2 4 5 6 3/3 3/8 4/4 2/2 1/4 4/4 2/3 total flow = 6, flow on cut = 4 + 2= 6
Observation 1 The network flow sent across any cut is
equal to the amount reaching sink. 1 3 2 4 5 6 3/3 3/8 4/4 2/2 1/4 4/4 2/3 total flow = 6, flow on cut = 4 + 2= 6
Observation 1 The network flow sent across any cut is
equal to the amount reaching sink. 1 3 2 4 5 6 3/3 3/8 4/4 2/2 1/4 4/4 2/3 total flow = 6, flow on cut = 4 + 2= 6
Observation 2 Then the value of the flow is at
most the capacity of any cut. 1 3 2 4 5 6 3 8 4 2 4 4 3 It’s trivial!
Observation 2 Then the value of the flow is at
most the capacity of any cut. 1 3 2 4 5 6 3 8 4 2 4 4 3 It’s trivial!
Observation 3 Let f be a flow, and let (S,T)
be an s-t cut whose capacity equals the value of f. 1 3 2 4 5 6 3/3 3/8 4/4 2/2 1/4 4/4 2/3 f is the maximum flow (S,T) is the minimum cut
Observation 3 Let f be a flow, and let (S,T)
be an s-t cut whose capacity equals the value of f. 1 3 2 4 5 6 3/3 3/8 4/4 2/2 1/4 4/4 2/3 f is the maximum flow (S,T) is the minimum cut
Max-Flow EQUAL Min-Cut
Example
1 3 2 4 5 6 3 8 4 2
4 4 3
1 3 2 4 5 6 3/3 3/8 4/4 2/2
1/4 4/4 2/3 Maximum Flow = 6
1 3 2 4 5 6 0/3 5/8 0/4 0/2
3/4 0/4 1/3 Residual Network
1 3 2 4 5 6 0/3 5/8 0/4 0/2
3/4 0/4 1/3 Minimum Cut = 6
1 3 2 4 5 6 0/3 5/8 0/4 0/2
3/4 0/4 1/3 Minimum Cut = 6
1 3 2 4 5 6 0/3 5/8 0/4 0/2
3/4 0/4 1/3 Minimum Cut = 6
1 3 2 4 5 6 0/3 5/8 0/4 0/2
3/4 0/4 1/3 Minimum Cut = 6
The minimum capacity limit the maximum flow!
find a s-t cut
1 3 2 4 5 6 3/3 3/8 4/4 2/2
1/4 4/4 2/3 Maximum Flow = 6
1 3 2 4 5 6 0/3 5/8 0/4 0/2
3/4 0/4 1/3 Travel on Residual Network
1 3 2 4 5 6 0/3 5/8 0/4 0/2
3/4 0/4 1/3 start from source
1 3 2 4 5 6 0/3 5/8 0/4 0/2
3/4 0/4 1/3 don’t travel through full edge
1 3 2 4 5 6 0/3 5/8 0/4 0/2
3/4 0/4 1/3 don’t travel through full edge
1 3 2 4 5 6 0/3 5/8 0/4 0/2
3/4 0/4 1/3 no residual edge
1 3 2 4 5 6 0/3 5/8 0/4 0/2
3/4 0/4 1/3 no residual edge
1 3 2 4 5 6 0/3 5/8 0/4 0/2
3/4 0/4 1/3 s-t cut
1 3 2 4 5 6 0/3 5/8 0/4 0/2
3/4 0/4 1/3 s-t cut
result of starting from sink 1 3 2 4 5
6 0/3 5/8 0/4 0/2 3/4 0/4 1/3
result of starting from sink 1 3 2 4 5
6 0/3 5/8 0/4 0/2 3/4 0/4 1/3
Minimum cut is non-unique!
time complexity: based on max-flow algorithm Ford-Fulkerson algorithm O(EF) Edmonds-Karp
algorithm O(VE2) Dinic algorithm O(V2E)
Stoer Wagner only for undirected graph time complexity: O(N3) or
O(N2log2N)
UVa 10480 - Sabotage Practice Now
Problem List UVa 10480 UVa 10989 POJ 1815 POJ 2914
POJ 3084 POJ 3308 POJ 3469
Reference • http://www.flickr.com/photos/dgjones/335788038/ • http://www.flickr.com/photos/njsouthall/3181945005/ • http://www.csie.ntnu.edu.tw/~u91029/Cut.html • http://en.wikipedia.org/wiki/Cut_(graph_theory) •
http://en.wikipedia.org/wiki/Max-flow_min-cut_theorem • http://www.cs.princeton.edu/courses/archive/spr04/cos226/lectures/ maxflow.4up.pdf • http://www.cnblogs.com/scau20110726/archive/ 2012/11/27/2791523.html
Thank You for Your Listening.