Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Expert Interaction on ML
Search
Kurian Benoy
February 25, 2024
Programming
0
84
Expert Interaction on ML
Kurian Benoy
February 25, 2024
Tweet
Share
More Decks by Kurian Benoy
See All by Kurian Benoy
How I ended up maintaining a python package with 1M+ downloads so far?
kurianbenoy
0
6
MTech Final Project - Presentation Slides
kurianbenoy
0
13
Project Review Report 5 - MTech Project
kurianbenoy
1
37
Joy of Programming
kurianbenoy
0
44
Project Review Report 4 - Robust Speech Recognition in Malayalam
kurianbenoy
0
89
Final project report - Phase 1
kurianbenoy
0
65
Project Review Slides
kurianbenoy
0
24
Demysitfying Async&Await in Python and JavaScript
kurianbenoy
0
170
Tensorflow User Groups(TFUG) India Summit
kurianbenoy
0
88
Other Decks in Programming
See All in Programming
速いWebフレームワークを作る
yusukebe
5
1.7k
AIを活用し、今後に備えるための技術知識 / Basic Knowledge to Utilize AI
kishida
21
5.6k
為你自己學 Python - 冷知識篇
eddie
1
350
Processing Gem ベースの、2D レトロゲームエンジンの開発
tokujiros
2
120
そのAPI、誰のため? Androidライブラリ設計における利用者目線の実践テクニック
mkeeda
2
260
ProxyによるWindow間RPC機構の構築
syumai
3
1.1k
「待たせ上手」なスケルトンスクリーン、 そのUXの裏側
teamlab
PRO
0
480
Vue・React マルチプロダクト開発を支える Vite
andpad
0
110
アプリの "かわいい" を支えるアニメーションツールRiveについて
uetyo
0
220
250830 IaCの選定~AWS SAMのLambdaをECSに乗り換えたときの備忘録~
east_takumi
0
380
個人軟體時代
ethanhuang13
0
320
Cache Me If You Can
ryunen344
1
630
Featured
See All Featured
Designing Experiences People Love
moore
142
24k
Measuring & Analyzing Core Web Vitals
bluesmoon
9
580
Statistics for Hackers
jakevdp
799
220k
Done Done
chrislema
185
16k
Code Review Best Practice
trishagee
70
19k
Reflections from 52 weeks, 52 projects
jeffersonlam
352
21k
The Pragmatic Product Professional
lauravandoore
36
6.9k
Being A Developer After 40
akosma
90
590k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
248
1.3M
The Invisible Side of Design
smashingmag
301
51k
Context Engineering - Making Every Token Count
addyosmani
1
30
Building Adaptive Systems
keathley
43
2.7k
Transcript
Machine Learning and Learning CS in real-world Expert Interaction
About ME SE- DataScientist - AOT Technologies Open Source contributor
- Keras, DVC, SMC Kaggle 2x Expert (under Rank 500) FOSSASIA Open TechNights Winner GCI Mentor - Tensorflow
Introduction
Artificial Intelligence (AI) Whenever a machine completes a set of
tasks based on set of stipulated rules that solves a problem(algorithms), such an intelligence systems is AI
Machine Learning (ML) Machine Learning is subset of AI application
that learns by itself. It actually reprograms itself, as it digests more data, to perform the specific task it's designed to perform with increasingly greater accuracy
Deep Learning (DL) It is a subset of machine learning
application that teaches itself to perform a specific task with increasingly greater accuracy, without human intervention.
None
Types of Machine Learning Data
Real World Applications
Supervised Learning Unsupervised Learning Reinforcement Learning
Few interesting applications of AI ImageNet competion AlphaGo Zero Protein
Folding GPT-3
My tech Journey
Coding in Schools vs Real-world Learning Syntax Just building basic
calaculators, software etc. Referring Documentation and googling a lot Building real useful software's
How to learn next?
References https://www.ibm.com/cloud/learn/what-is-artificial-intelligence 1. https://github.com/GopikrishnanSasikumar/How-to-learn-ML-for-humans 2.