F M F M F M F M F Weather 0.48 0.56 0.47 0.58 0.51 0.57 0.52 0.58 0.55 0.59 0.53 0.51 0.51 0.52 0.55 0.53 0.55 0.57 0.54 0.54 0.61 0.62 0.62 0.63 0.62 0.66 0.62 0.64 0.62 0.66 0.68 0.67 0.65 0.67 0.67 0.67 0.66 0.67 0.68 0.67 0.72 0.73 0.71 0.72 0.71 0.75 0.74 0.72 0.73 0.74 age x gender x type x hour
F M F M F M F M F Weather 0.48 0.56 0.47 0.58 0.51 0.57 0.52 0.58 0.55 0.59 0.53 0.51 0.51 0.52 0.55 0.53 0.55 0.57 0.54 0.54 0.61 0.62 0.62 0.63 0.62 0.66 0.62 0.64 0.62 0.66 0.68 0.67 0.65 0.67 0.67 0.67 0.66 0.67 0.68 0.67 0.72 0.73 0.71 0.72 0.71 0.75 0.74 0.72 0.73 0.74 age x gender x type x hour
Split every K into Partition P=1 P=2 P=3 > Always use the same instance for arm and partition id pairs > Consistent hash by Proxy(NGINX) 1 2 3 4 5 6 7 Arm=3 Partition=3 Arm=2 Partition=1
Channel as an Example "LINE-Like" Product Management > Poster Session 13:40-14:20/15:30-16:10 (2days) > Case Studies on Smart Channel Platforms and How To Improve Content > Day1: C1-7 18:10-18:50 > Explanation of SmartChannel From the Perspective of ML / DA Engineer Building a Smart Recommender System Across LINE Services Continuous Improvements in Smart Channel Platform/Contents Related Presentation