Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
単純ベイズ分類利用のための基礎知識 #TechLunch
Search
Livesense Inc.
PRO
April 23, 2014
Technology
0
110
単純ベイズ分類利用のための基礎知識 #TechLunch
2012/04/18(水) @ Livesense TechLunch
発表者:福田 絵里
Livesense Inc.
PRO
April 23, 2014
Tweet
Share
More Decks by Livesense Inc.
See All by Livesense Inc.
27新卒_総合職採用_会社説明資料
livesense
PRO
0
2.6k
27新卒_Webエンジニア職採用_会社説明資料
livesense
PRO
0
6.6k
株式会社リブセンス・転職会議 採用候補者様向け資料
livesense
PRO
0
190
株式会社リブセンス 会社説明資料(報道関係者様向け)
livesense
PRO
0
1.6k
データ基盤の負債解消のためのリプレイス
livesense
PRO
0
550
26新卒_総合職採用_会社説明資料
livesense
PRO
0
13k
株式会社リブセンス会社紹介資料 / Invent the next common.
livesense
PRO
2
52k
26新卒_Webエンジニア職採用_会社説明資料
livesense
PRO
1
13k
中途セールス職_会社説明資料
livesense
PRO
0
290
Other Decks in Technology
See All in Technology
ランサムウェア対策としてのpnpm導入のススメ
ishikawa_satoru
0
230
生成AIを活用した音声文字起こしシステムの2つの構築パターンについて
miu_crescent
PRO
3
230
[CV勉強会@関東 World Model 読み会] Orbis: Overcoming Challenges of Long-Horizon Prediction in Driving World Models (Mousakhan+, NeurIPS 2025)
abemii
0
150
AWS DevOps Agent x ECS on Fargate検証 / AWS DevOps Agent x ECS on Fargate
kinunori
2
240
コンテナセキュリティの最新事情 ~ 2026年版 ~
kyohmizu
7
2.4k
OpenShiftでllm-dを動かそう!
jpishikawa
0
140
SREのプラクティスを用いた3領域同時 マネジメントへの挑戦 〜SRE・情シス・セキュリティを統合した チーム運営術〜
coconala_engineer
2
780
こんなところでも(地味に)活躍するImage Modeさんを知ってるかい?- Image Mode for OpenShift -
tsukaman
1
170
外部キー制約の知っておいて欲しいこと - RDBMSを正しく使うために必要なこと / FOREIGN KEY Night
soudai
PRO
12
5.6k
広告の効果検証を題材にした因果推論の精度検証について
zozotech
PRO
0
210
22nd ACRi Webinar - 1Finity Tamura-san's slide
nao_sumikawa
0
110
Bill One急成長の舞台裏 開発組織が直面した失敗と教訓
sansantech
PRO
2
410
Featured
See All Featured
Ecommerce SEO: The Keys for Success Now & Beyond - #SERPConf2024
aleyda
1
1.8k
Embracing the Ebb and Flow
colly
88
5k
Stop Working from a Prison Cell
hatefulcrawdad
273
21k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
52
5.8k
Writing Fast Ruby
sferik
630
62k
Why You Should Never Use an ORM
jnunemaker
PRO
61
9.7k
Building AI with AI
inesmontani
PRO
1
710
Agile Actions for Facilitating Distributed Teams - ADO2019
mkilby
0
120
Everyday Curiosity
cassininazir
0
130
Being A Developer After 40
akosma
91
590k
Efficient Content Optimization with Google Search Console & Apps Script
katarinadahlin
PRO
1
330
Designing for Performance
lara
610
70k
Transcript
単純ベイズ分類器 利用のための基礎知識
•事前確率 ・ある変数について知られていることを確率とし て表現するもの ・証拠なし •事後確率 ・証拠を考慮に入れた条件での変数の確率 事前確率・事後確率 相性が良い確率 0.5
相性が良い確率 0.7 データ: スポーツの趣味 が一致 初対面
「あなたは事業ネタ鑑定人です」 ・事業が成功する確率は「千に3つ」 ・それが成功ネタの時:言い当てられる確率99% ・それが失敗ネタの時:言い当てられる確率90% ある日、絶対成功ネタだ!とあなたが確信した 事業ネタに出会います。 問題:それが実際に成功ネタである確率は?? 事前確率・事後確率 (問)
「あなたは事業ネタ鑑定人です」 ・事業が成功する確率は「千に3つ」 ・それが成功ネタの時:言い当てられる確率99% ・それが失敗ネタの時:言い当てられる確率90% ある日、絶対成功ネタだ!とあなたが確信した 事業ネタに出会います。 問題:それが実際に成功ネタである確率は?? 正解:2.9% 事前確率・事後確率 (解答)
事前確率 事後確率
AのもとでBが起こる確率× Aの起こる確率 BのもとでAが起こる確率= ―――――――――――――――――――― Bの起こる確率 ベイズの定理 データ 事前確率 事後確率
データDが得られたときの原因がH 1 である確率 ベイズの基本公式 データ(結果) 仮説1(原因) = 一般化
H1 = 成功、H2 = 失敗、D = 成功判定 P(成功) = 成功ネタである確率
= 0.3% P(失敗) = 成功ネタでない確率 = 99.7% P(成功判定|成功) = 成功ネタを成功と判定する確率 = 99% P(成功判定|失敗) = 失敗ネタを成功と判定する確率 = 10% P(成功|成功判定) = 成功判定されたネタが実際に成功ネタである確率 P(成功判定|成功) × P(成功) = ――――――――――――――――――――――――――――― P(成功判定|成功) × P(成功) + P(成功判定|失敗) × P(失敗) = 2.9% 事前確率・事後確率 (解説) 事前確率 事後確率
ベイズ理論を利用して、与えられたデータを目的のカテゴリー に分類する技法。 •単純ベイズ分類器 (Naive Bayes classifier) ベイズ分類の最も簡単なもの。 カテゴリ毎に「そのカテゴリに属する文書」を使って学習。 数あるテキスト分類の技法との比較すると、 実装が簡単、高速
→ 比較的よく利用されている •補集合単純ベイズ分類器 (Complement Bayes classifier) カテゴリ毎に「そのカテゴリに属さない文書」を使って学習。 速さは単純ベイズ分類より多少劣るが、単純ベイズ分類よりも 精度が高い。 ベイズ分類器 (Bayes classifier)
※テキスト分類手法:非常に多くの研究があり、そのア ルゴリズムも大量 ナイーブベイズ、決定木、Rocchio分類法、k-最近傍法、ロジス ティック回帰、ニューラルネットワーク、サポートベクトルマシン 、ブースティング etc... ※一般的には、サポートベクトルマシンやブースティン グが他の手法と比べて高精度な分類ができると言われて いる
•Paul Grahamのスパム対策 → ベイジアンフィルタを考案 単純ベイズ分類器の適用例 学習量が増えると フィルタの分類精 度が上昇 個々の判定を間違えた
場合には、ユーザが正 しい内容に判定しなお し、再学習 数学モデル 数学モデル ( (ベイズ理論 ベイズ理論) ) スパムメール スパムではない メール トレーニング 用データ 参照 登録 元メール 再学習
→次回 単純ベイズ分類器実装
→次回 MySQL Cluster 7.2