Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
単純ベイズ分類利用のための基礎知識 #TechLunch
Search
Livesense Inc.
PRO
April 23, 2014
Technology
0
94
単純ベイズ分類利用のための基礎知識 #TechLunch
2012/04/18(水) @ Livesense TechLunch
発表者:福田 絵里
Livesense Inc.
PRO
April 23, 2014
Tweet
Share
More Decks by Livesense Inc.
See All by Livesense Inc.
27新卒_Webエンジニア職採用_会社説明資料
livesense
PRO
0
110
株式会社リブセンス・転職会議 採用候補者様向け資料
livesense
PRO
0
15
株式会社リブセンス 会社説明資料(報道関係者様向け)
livesense
PRO
0
1.4k
データ基盤の負債解消のためのリプレイス
livesense
PRO
0
390
26新卒_総合職採用_会社説明資料
livesense
PRO
0
8.8k
株式会社リブセンス会社紹介資料 / Invent the next common.
livesense
PRO
1
27k
26新卒_Webエンジニア職採用_会社説明資料
livesense
PRO
1
12k
中途セールス職_会社説明資料
livesense
PRO
0
250
EM候補者向け転職会議説明資料
livesense
PRO
0
120
Other Decks in Technology
See All in Technology
より良いプロダクトの開発を目指して - 情報を中心としたプロダクト開発 #phpcon #phpcon2025
bengo4com
1
3.2k
Node-REDのFunctionノードでMCPサーバーの実装を試してみた / Node-RED × MCP 勉強会 vol.1
you
PRO
0
130
250627 関西Ruby会議08 前夜祭 RejectKaigi「DJ on Ruby Ver.0.1」
msykd
PRO
2
370
B2C&B2B&社内向けサービスを抱える開発組織におけるサービス価値を最大化するイニシアチブ管理
belongadmin
0
320
怖くない!はじめてのClaude Code
shinya337
0
310
解析の定理証明実践@Lean 4
dec9ue
1
200
AI専用のリンターを作る #yumemi_patch
bengo4com
4
2.2k
PHPでWebブラウザのレンダリングエンジンを実装する
dip_tech
PRO
0
220
Zephyr RTOSを使った開発コンペに参加した件
iotengineer22
1
160
ハッカソン by 生成AIハッカソンvol.05
1ftseabass
PRO
0
150
論文紹介:LLMDet (CVPR2025 Highlight)
tattaka
0
240
本が全く読めなかった過去の自分へ
genshun9
0
720
Featured
See All Featured
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
53k
Automating Front-end Workflow
addyosmani
1370
200k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
45
7.5k
We Have a Design System, Now What?
morganepeng
53
7.7k
Build The Right Thing And Hit Your Dates
maggiecrowley
36
2.8k
Fireside Chat
paigeccino
37
3.5k
Product Roadmaps are Hard
iamctodd
PRO
54
11k
BBQ
matthewcrist
89
9.7k
The Art of Programming - Codeland 2020
erikaheidi
54
13k
Optimizing for Happiness
mojombo
379
70k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
107
19k
Building Adaptive Systems
keathley
43
2.6k
Transcript
単純ベイズ分類器 利用のための基礎知識
•事前確率 ・ある変数について知られていることを確率とし て表現するもの ・証拠なし •事後確率 ・証拠を考慮に入れた条件での変数の確率 事前確率・事後確率 相性が良い確率 0.5
相性が良い確率 0.7 データ: スポーツの趣味 が一致 初対面
「あなたは事業ネタ鑑定人です」 ・事業が成功する確率は「千に3つ」 ・それが成功ネタの時:言い当てられる確率99% ・それが失敗ネタの時:言い当てられる確率90% ある日、絶対成功ネタだ!とあなたが確信した 事業ネタに出会います。 問題:それが実際に成功ネタである確率は?? 事前確率・事後確率 (問)
「あなたは事業ネタ鑑定人です」 ・事業が成功する確率は「千に3つ」 ・それが成功ネタの時:言い当てられる確率99% ・それが失敗ネタの時:言い当てられる確率90% ある日、絶対成功ネタだ!とあなたが確信した 事業ネタに出会います。 問題:それが実際に成功ネタである確率は?? 正解:2.9% 事前確率・事後確率 (解答)
事前確率 事後確率
AのもとでBが起こる確率× Aの起こる確率 BのもとでAが起こる確率= ―――――――――――――――――――― Bの起こる確率 ベイズの定理 データ 事前確率 事後確率
データDが得られたときの原因がH 1 である確率 ベイズの基本公式 データ(結果) 仮説1(原因) = 一般化
H1 = 成功、H2 = 失敗、D = 成功判定 P(成功) = 成功ネタである確率
= 0.3% P(失敗) = 成功ネタでない確率 = 99.7% P(成功判定|成功) = 成功ネタを成功と判定する確率 = 99% P(成功判定|失敗) = 失敗ネタを成功と判定する確率 = 10% P(成功|成功判定) = 成功判定されたネタが実際に成功ネタである確率 P(成功判定|成功) × P(成功) = ――――――――――――――――――――――――――――― P(成功判定|成功) × P(成功) + P(成功判定|失敗) × P(失敗) = 2.9% 事前確率・事後確率 (解説) 事前確率 事後確率
ベイズ理論を利用して、与えられたデータを目的のカテゴリー に分類する技法。 •単純ベイズ分類器 (Naive Bayes classifier) ベイズ分類の最も簡単なもの。 カテゴリ毎に「そのカテゴリに属する文書」を使って学習。 数あるテキスト分類の技法との比較すると、 実装が簡単、高速
→ 比較的よく利用されている •補集合単純ベイズ分類器 (Complement Bayes classifier) カテゴリ毎に「そのカテゴリに属さない文書」を使って学習。 速さは単純ベイズ分類より多少劣るが、単純ベイズ分類よりも 精度が高い。 ベイズ分類器 (Bayes classifier)
※テキスト分類手法:非常に多くの研究があり、そのア ルゴリズムも大量 ナイーブベイズ、決定木、Rocchio分類法、k-最近傍法、ロジス ティック回帰、ニューラルネットワーク、サポートベクトルマシン 、ブースティング etc... ※一般的には、サポートベクトルマシンやブースティン グが他の手法と比べて高精度な分類ができると言われて いる
•Paul Grahamのスパム対策 → ベイジアンフィルタを考案 単純ベイズ分類器の適用例 学習量が増えると フィルタの分類精 度が上昇 個々の判定を間違えた
場合には、ユーザが正 しい内容に判定しなお し、再学習 数学モデル 数学モデル ( (ベイズ理論 ベイズ理論) ) スパムメール スパムではない メール トレーニング 用データ 参照 登録 元メール 再学習
→次回 単純ベイズ分類器実装
→次回 MySQL Cluster 7.2