Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
単純ベイズ分類利用のための基礎知識 #TechLunch
Search
Livesense Inc.
PRO
April 23, 2014
Technology
0
77
単純ベイズ分類利用のための基礎知識 #TechLunch
2012/04/18(水) @ Livesense TechLunch
発表者:福田 絵里
Livesense Inc.
PRO
April 23, 2014
Tweet
Share
More Decks by Livesense Inc.
See All by Livesense Inc.
株式会社リブセンス 会社説明資料(報道関係者様向け)
livesense
PRO
0
1.1k
データ基盤の負債解消のためのリプレイス
livesense
PRO
0
260
26新卒_総合職採用_会社説明資料
livesense
PRO
0
4.6k
株式会社リブセンス会社紹介資料 / Invent the next common.
livesense
PRO
1
13k
26新卒_Webエンジニア職採用_会社説明資料
livesense
PRO
1
8.2k
中途セールス職_会社説明資料
livesense
PRO
0
200
EM候補者向け転職会議説明資料
livesense
PRO
0
87
コロナで失われたノベルティ作成ノウハウを復活させた話
livesense
PRO
0
210
転職会議でGPT-3を活用した企業口コミ要約機能をリリースした話
livesense
PRO
0
1.3k
Other Decks in Technology
See All in Technology
役員・マネージャー・著者・エンジニアそれぞれの立場から見たAWS認定資格
nrinetcom
PRO
4
6.4k
Oracle Database Technology Night #87-1 : Exadata Database Service on Exascale Infrastructure(ExaDB-XS)サービス詳細
oracle4engineer
PRO
1
200
日経のデータベース事業とElasticsearch
hinatades
PRO
0
260
4th place solution Eedi - Mining Misconceptions in Mathematics
rist
0
150
"TEAM"を導入したら最高のエンジニア"Team"を実現できた / Deploying "TEAM" and Building the Best Engineering "Team"
yuj1osm
1
220
スキルだけでは満たせない、 “組織全体に”なじむオンボーディング/Onboarding that fits “throughout the organization” and cannot be satisfied by skills alone
bitkey
0
190
開発者のための FinOps/FinOps for Engineers
oracle4engineer
PRO
1
160
EMConf JP 2025 懇親会LT / EMConf JP 2025 social gathering
sugamasao
2
200
JAWS DAYS 2025 アーキテクチャ道場 事前説明会 / JAWS DAYS 2025 briefing document
naospon
0
2.5k
Aurora PostgreSQLがCloudWatch Logsに 出力するログの課金を削減してみる #jawsdays2025
non97
1
230
入門 PEAK Threat Hunting @SECCON
odorusatoshi
0
170
Potential EM 制度を始めた理由、そして2年後にやめた理由 - EMConf JP 2025
hoyo
2
2.8k
Featured
See All Featured
Visualization
eitanlees
146
15k
Unsuck your backbone
ammeep
669
57k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
330
21k
Statistics for Hackers
jakevdp
797
220k
Build The Right Thing And Hit Your Dates
maggiecrowley
34
2.5k
YesSQL, Process and Tooling at Scale
rocio
172
14k
The World Runs on Bad Software
bkeepers
PRO
67
11k
Bash Introduction
62gerente
611
210k
Faster Mobile Websites
deanohume
306
31k
Stop Working from a Prison Cell
hatefulcrawdad
267
20k
Building Applications with DynamoDB
mza
93
6.2k
Building Better People: How to give real-time feedback that sticks.
wjessup
367
19k
Transcript
単純ベイズ分類器 利用のための基礎知識
•事前確率 ・ある変数について知られていることを確率とし て表現するもの ・証拠なし •事後確率 ・証拠を考慮に入れた条件での変数の確率 事前確率・事後確率 相性が良い確率 0.5
相性が良い確率 0.7 データ: スポーツの趣味 が一致 初対面
「あなたは事業ネタ鑑定人です」 ・事業が成功する確率は「千に3つ」 ・それが成功ネタの時:言い当てられる確率99% ・それが失敗ネタの時:言い当てられる確率90% ある日、絶対成功ネタだ!とあなたが確信した 事業ネタに出会います。 問題:それが実際に成功ネタである確率は?? 事前確率・事後確率 (問)
「あなたは事業ネタ鑑定人です」 ・事業が成功する確率は「千に3つ」 ・それが成功ネタの時:言い当てられる確率99% ・それが失敗ネタの時:言い当てられる確率90% ある日、絶対成功ネタだ!とあなたが確信した 事業ネタに出会います。 問題:それが実際に成功ネタである確率は?? 正解:2.9% 事前確率・事後確率 (解答)
事前確率 事後確率
AのもとでBが起こる確率× Aの起こる確率 BのもとでAが起こる確率= ―――――――――――――――――――― Bの起こる確率 ベイズの定理 データ 事前確率 事後確率
データDが得られたときの原因がH 1 である確率 ベイズの基本公式 データ(結果) 仮説1(原因) = 一般化
H1 = 成功、H2 = 失敗、D = 成功判定 P(成功) = 成功ネタである確率
= 0.3% P(失敗) = 成功ネタでない確率 = 99.7% P(成功判定|成功) = 成功ネタを成功と判定する確率 = 99% P(成功判定|失敗) = 失敗ネタを成功と判定する確率 = 10% P(成功|成功判定) = 成功判定されたネタが実際に成功ネタである確率 P(成功判定|成功) × P(成功) = ――――――――――――――――――――――――――――― P(成功判定|成功) × P(成功) + P(成功判定|失敗) × P(失敗) = 2.9% 事前確率・事後確率 (解説) 事前確率 事後確率
ベイズ理論を利用して、与えられたデータを目的のカテゴリー に分類する技法。 •単純ベイズ分類器 (Naive Bayes classifier) ベイズ分類の最も簡単なもの。 カテゴリ毎に「そのカテゴリに属する文書」を使って学習。 数あるテキスト分類の技法との比較すると、 実装が簡単、高速
→ 比較的よく利用されている •補集合単純ベイズ分類器 (Complement Bayes classifier) カテゴリ毎に「そのカテゴリに属さない文書」を使って学習。 速さは単純ベイズ分類より多少劣るが、単純ベイズ分類よりも 精度が高い。 ベイズ分類器 (Bayes classifier)
※テキスト分類手法:非常に多くの研究があり、そのア ルゴリズムも大量 ナイーブベイズ、決定木、Rocchio分類法、k-最近傍法、ロジス ティック回帰、ニューラルネットワーク、サポートベクトルマシン 、ブースティング etc... ※一般的には、サポートベクトルマシンやブースティン グが他の手法と比べて高精度な分類ができると言われて いる
•Paul Grahamのスパム対策 → ベイジアンフィルタを考案 単純ベイズ分類器の適用例 学習量が増えると フィルタの分類精 度が上昇 個々の判定を間違えた
場合には、ユーザが正 しい内容に判定しなお し、再学習 数学モデル 数学モデル ( (ベイズ理論 ベイズ理論) ) スパムメール スパムではない メール トレーニング 用データ 参照 登録 元メール 再学習
→次回 単純ベイズ分類器実装
→次回 MySQL Cluster 7.2