Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Frotiers of Natural Language Processing
Search
Mamoru Komachi
April 23, 2015
Technology
0
21
Frotiers of Natural Language Processing
Recruit Technologies Open Lab #01 (テーマ: 自然言語処理)で話したときに使ったスライドです。
https://atnd.org/events/64383
Mamoru Komachi
April 23, 2015
Tweet
Share
More Decks by Mamoru Komachi
See All by Mamoru Komachi
IM2024
mamoruk
0
310
大規模言語モデルのインパクトと課題/oc2023
mamoruk
0
58
Exploring and Adapting Chinese GPT to Pinyin Input Method
mamoruk
0
130
Recent advances in natural language understanding and natural language generation
mamoruk
0
120
Introduction to Natural Language Processing
mamoruk
0
47
Generative Adversarial Network for Natural Language Processing
mamoruk
0
53
Robust Distant Supervision Relation Extraction via Deep Reinforcement Learning
mamoruk
2
760
Sequence-to-Dependency Neural Machine Translation
mamoruk
0
53
Visualizing and Understanding Neural Machine Translation
mamoruk
0
45
Other Decks in Technology
See All in Technology
20250807_Kiroと私の反省会
riz3f7
0
270
コミュニティと計画的偶発性理論 - 出会いが人生を変える / Life-Changing Encounters
soudai
PRO
7
720
Amazon GuardDuty での脅威検出:脅威検出の実例から学ぶ
kintotechdev
0
130
EKS Pod Identity における推移的な session tags
z63d
1
150
Foundation Model × VisionKit で実現するローカル OCR
sansantech
PRO
1
420
GCASアップデート(202506-202508)
techniczna
0
210
ウォンテッドリーのアラート設計と Datadog 移行での知見
donkomura
0
150
JAWS AI/ML #30 AI コーディング IDE "Kiro" を触ってみよう
inariku
3
400
Rethinking Incident Response: Context-Aware AI in Practice - Incident Buddy Edition -
rrreeeyyy
0
120
いかにして命令の入れ替わりについて心配するのをやめ、メモリモデルを愛するようになったか(改)
nullpo_head
7
2.7k
生成AIによるソフトウェア開発の収束地点 - Hack Fes 2025
vaaaaanquish
34
16k
Amazon Bedrock AgentCore でプロモーション用動画生成エージェントを開発する
nasuvitz
2
110
Featured
See All Featured
What’s in a name? Adding method to the madness
productmarketing
PRO
23
3.6k
Java REST API Framework Comparison - PWX 2021
mraible
33
8.8k
Making Projects Easy
brettharned
117
6.3k
Practical Orchestrator
shlominoach
190
11k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
18
1.1k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
30
9.6k
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
4k
jQuery: Nuts, Bolts and Bling
dougneiner
64
7.8k
4 Signs Your Business is Dying
shpigford
184
22k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
32
1.4k
The World Runs on Bad Software
bkeepers
PRO
70
11k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
34
3.1k
Transcript
ࣗવݴޠॲཧͷ৽ల։ 20154݄21 टେֶ౦ژ γεςϜσβΠϯֶ෦ খொक
ࣗݾհ: খொकʢ͜·ͪ·Δʣ 2 ß 2005.03 ౦ژେֶڭཆֶ෦جૅՊֶՊ Պֶ࢙ɾՊֶֶՊଔۀ ß 2010.03 ಸྑઌେɾത࢜ޙظ՝ఔमྃ
ത࢜ʢֶʣ ઐ: ࣗવݴޠॲཧ ß 2010.04ʙ2013.03 ಸྑઌେ ॿڭʢদຊ༟࣏ݚڀࣨʣ ß 2013.04〜 टେֶ౦ژ ।ڭतʢࣗવݴޠॲཧݚڀࣨʣ
ຊͷ࣍ ß ਂֶश͕ࣗવݴޠॲཧʹ༩͑ΔΠϯύ Ϋτ ß ࣗવݴޠॲཧͷ৽ͨͳൃల 3
ਂֶशʢdeep learningʣ ß ෳϨΠϠʔͷχϡʔϥϧωοτϫʔΫ ʹΑͬͯෳࡶͳϞσϧΛֶश͢ΔΈ ß ༷ʑͳύλʔϯೝࣝλεΫͰେ෯ͳੑೳ ্Λୡ͠ɺGoogle, Facebook, Microsoft,
Baidu ͳͲ͞·͟·ͳاۀ͕͜ ͧͬͯݚڀ 4
Lee et al., ICML 2009. 5
ਂֶशͷॴ ß ૉੑֶʢfeature engineeringʣ͕ෆཁɻ ϥϕϧͳ͠σʔλ͔Βࣗಈతʹ༗ޮͳૉ ੑͷΈ߹Θֶ͕ͤशՄೳɻ →ϋΠύʔύϥϝʔλଘࡏ ß σʔλ͔ΒେҬతͳදݱֶशʢdistributed representationʣ͕Մೳ
→ΫϥελϦϯάہॴతͳදݱֶश 6
χϡʔϥϧωοτϫʔΫ ͷϒϨΠΫεϧʔ ß Hinton et al., A Fast Learning Algorithm
for Deep Belief Nets, Neural Computing, 2006. ß χϡʔϥϧωοτϫʔΫ1950͔Β ͕͋ͬͨɺදݱೳྗ͕ߴ͗ͯ͢ʢσʔλ ྔʹରͯ͠ʣաֶशʹͳΓ͔ͬͨ͢ɻ →͝ͱʹֶशΛߦ͍ɺෳΛॏͶΔ ͜ͱͰաֶशͷ͕ղܾͰ͖ͨʂ 7
࠶ؼతχϡʔϥϧωοτϫʔΫ Λ༻͍ͨը૾ೝࣝͱߏจղੳ 8 • Parsing Natural Scenes and Natural Language
with Recursive Neural Networks, Socher et al., ICML 2011. • ྡ͢Δը૾ྖҬɾ୯ ޠ͔Β࠶ؼతʹߏΛ ೝࣝ͢Δ →Staford Parser ʹ౷ ߹ (ACL 2013)
࠶ؼతχϡʔϥϧωοτϫʔΫͰ ϑϨʔζͷײۃੑྨ࣮ݱ 9 • Recursive Deep Models for Semantic Compositionality
Over a Sentiment Treebank, Socher et al., EMNLP 2013.
Socher et al. (NIPS 2011): ୯ޠϕΫ τϧ͔ΒจͷҙຯΛ࠶ؼతʹܭࢉ 10
ϦΧϨϯτχϡʔϥϧωοτ ϫʔΫͰແݶͷจ຺ΛߟྀՄೳ 11 • Recurrent Neural Network based Language Model,
Mikolov et al., InterSpeech 2010. →աڈͷཤྺΛߟྀͯ͠ݱࡏͷ୯ޠΛ༧ଌ͢ΔϞσϧ
ػց༁ܥྻ͔ΒܥྻΛੜ͢ ΔϞσϧͱͯ͠ਂֶशͰѻ͑Δ ß Sequence to Sequence Learning with Neural Networks,
Sutskever et al., NIPS 2014. →LSTM (Long-Short Term Memory) Λ2ͭ༻ ͍ɺೖྗܥྻΛݻఆͷϕΫτϧʹม ͠ɺͦͷϕΫτϧ͔Βग़ྗܥྻΛੜ 12
จࣈ͚͔ͩΒਂֶशͰςΩετ ྨϓϩάϥϜ͕Ͱ͖ͯ͠·͏ ß Text Understanding from Scratch, Zhang and LeCun,
arXiv 2015. →จࣈ͚͔ͩΒதӳͷςΩετྨثΛֶश ß Learning to Execute, Zaremba and Sutskever, arXiv 2015. →RNNͱLTSM͚͔ͩΒPythonϓϩάϥϜΛ ʮֶशʯ࣮ͯ͠ߦ 13
ਂֶशΛͬͯϚϧνϞʔμϧ ͳೖग़ྗΛࣗવʹ౷߹ ß ը૾͚͔ͩΒΩϟϓγϣϯΛੜ http://deeplearning.cs.toronto.edu/i2t http://googleresearch.blogspot.jp/2014/11/a-picture-is- worth-thousand-coherent.html 14
ຊͷ࣍ ß ਂֶश͕ࣗવݴޠॲཧʹ༩͑ΔΠϯύ Ϋτ ß ࣗવݴޠॲཧͷ৽ͨͳൃల 15
ࣗવݴޠॲཧͷޭ ß ࣝผϞσϧ Þ λά͖ͭίʔύεΛ༻ҙͯ͠ڭࢣ͋Γֶश Þ ܗଶૉղੳɺݻ༗දݱೝࣝɺߏจղੳɺetc ß ࠷దԽ Þ
ϥϯΩϯάΈ߹Θͤ࠷దԽʹఆࣜԽ Þ Σϒݕࡧɺػց༁ɺจॻཁɺetc 16
ੈքΛڍ͛ͨଟݴޠॲཧͷͨΊͷ ཁૉٕज़ͷݚڀ։ൃ ß CoNLL: Conference on Natural Language Learning ͷڞ௨λεΫʢຖ։࠵ʣ
Þ 2012: ଟݴޠஊղੳ Þ 2009: ଟݴޠߏจɾҙຯղੳ Þ 2006, 2007: ଟݴޠߏจղੳ ß ಉ͡ΞϧΰϦζϜΛෳͷݴޠʹద༻͠ɺ ݴޠʹΑΒͳ͍ղੳख๏Λ୳ٻ 17
Java ʹΑΔଟݴޠॲཧπʔϧ ʢ༻ͷϞσϧϥΠηϯεཁަবʣ ß Stanford CoreNLP (Java) Þ ӳޠɺεϖΠϯޠɺதࠃޠͷܗଶૉղੳɾݻ ༗දݱೝࣝɾߏจղੳɾஊղੳπʔϧ
ß Apache OpenNLP (Java) Þ σϯϚʔΫޠɺυΠπޠɺӳޠɺεϖΠϯޠɺ ΦϥϯμޠɺϙϧτΨϧޠɺεΣʔσϯޠ Λαϙʔτ ß LingPipe (Java) Þ ӳޠʢࢺ༩ɾݻ༗දݱநग़ʣɾதࠃޠ ʢ୯ޠׂʣͷϞσϧ 18
ଟݴޠܗଶૉղੳͷͨΊͷ λά༷ͱίʔύε ß A Universal Part-of-Speech Tagset, Petrov et al.,
LREC 2012. Þ 22ݴޠ: ӳޠɺதࠃޠɺຊޠɺؖࠃޠɺetc Þ ଟݴޠɾݴޠΛ·͍ͨͩߏจղੳͷݚڀ։ൃ ͷͨΊʹɺ·ͣࢺΛҰ؏͚͍ͯͭͨ͠ Þ ຊޠຊޠॻ͖ݴ༿ۉߧίʔύε ʢBCCWJʣͷ୯Ґʹ४ڌͨ͠୯ޠׂ 19
ଟݴޠΓड͚ղੳͷͨΊͷ λά༷ͱίʔύε ß Universal Dependency Annotation for Multilingual Parsing, McDonald
et al., ACL 2013. Þ υΠπޠɾӳޠɾεΣʔσϯޠɾεϖΠϯޠɾ ϑϥϯεޠɾؖࠃޠɾetc Þ ຊޠ Universal Dependencies ͷࢼҊ, ۚࢁΒ, ݴ ޠॲཧֶձ࣍େձ 2015. 20
ࣗવݴޠॲཧͷཁૉٕज़ख़ظ ཁૉٕज़ ਫ਼ ܗଶૉղੳʢ͔ͪॻ͖ʣ 99% ߏจղੳʢΓड͚ʣ 90% ҙຯղੳʢड़ޠ߲ߏʣ 60% ஊղੳʢจΛ͑ͨؔʣ
30% 21 ղ ੳ ͷ ྲྀ Ε จਖ਼ղʹ͢Δͱ5ׂ ཁૉٕज़୯ମͰͷਫ਼্಄ଧͪ ᶃΞϓϦέʔγϣϯʹଈͨ͠ੑೳධՁͷඞཁ ᶄਫ਼Ҏ֎ͷ໘ͰͷΞϐʔϧ
ӳޠͷݴޠղੳ৽ฉهࣄ͔Β ΣϒςΩετ ß Workshop on Syntactic Analysis on Non- Canonical
Language (SANCL 2012) ß Google English Web Treebank (2012) Þ ΣϒςΩετʢϒϩάɺχϡʔεάϧʔϓɺ ϝʔϧɺϦϏϡʔɺQA ʣʹܗଶૉɾߏจʢ Γड͚ʣใΛλά͚ͮ 22
ΣϒςΩετɺΑΓ͍͠ ϢʔβੜܕͷςΩετղੳ ß Tweet NLPʢӳޠͷΈʣ http://www.ark.cs.cmu.edu/TweetNLP/ Þ Twokenizer: ܗଶૉղੳ Þ
Tweeboparser: Γड͚ղੳ Þ Tweebank: Twitter ίʔύε Þ Twitter Word Clusters: ୯ޠΫϥελ 23
ޠऀ͕ॻ͍ͨจ๏తʹਖ਼͍͠ςΩ ετ͔ΒɺݴޠֶशऀͷςΩετ ß 2011લޙ͔ΒຖͷΑ͏ʹӳޠֶशऀ ͷ࡞จͷจ๏ޡΓగਖ਼ڞ௨λεΫ͕։࠵ Þ Helping Our Own (HOO)
2011, 2012 Þ CoNLL 2013, 2014 ß ӳޠֶशऀίʔύεଟϦϦʔε Þ NUS Corpus of Learner English Þ Lang-8 Learner Corpora 24
ݻ༗දݱೝࣝɾޠٛᐆດੑղফ ͔Β entity linking ß ݻ༗දݱೝࣝ Þ ݻ༗දݱͷՕॴΛಉఆ ß
entity linking Þ ݻ༗දݱ͕ԿΛࢦ͔͢ᐆດੑղফ Þ Wikify (Wikification) 25 ҆ഒट૬͕ࣄ࣮ޡೝΛೝΊɺҨ״Λද໌ͨ͠ɻ
ຊͷ·ͱΊ ß ਂֶश͕ݴޠॲཧʹ༩͑ΔΠϯύΫτ Þ ߏจղੳ͔Βҙຯղੳ·Ͱ end-to-end Þ ϚϧνϞʔμϧʢը૾ɾԻɾݴޠʣॲཧ Þ ςΩετੜ͕ࠓޙരൃతʹීٴͦ͠͏
ß ࣗવݴޠॲཧͷ৽ͨͳൃల Þ ݴޠඇґଘͳख๏ͷݕ౼ͱͷੳ Þ ؤ݈ͳղੳख๏ͷࡧ Þ ΣϒͷొʹΑΔݹͯ͘৽͍͠ઃఆ 26