Upgrade to Pro — share decks privately, control downloads, hide ads and more …

JavaScript Days 2025 - KI-Bootcamp - Generative...

JavaScript Days 2025 - KI-Bootcamp - Generative AI für Angular-Entwickler - Grundlagen und Backend verstehen - Frontend beherrschen

Generative AI revolutioniert Unternehmensanwendungen – aber Angular-Entwickler:innen müssen nicht zu AI-Backend-Expert:innen werden. Dieser zweitägige Workshop zeigt, wie du als Frontend-Entwickler:in professionell mit GenAI-APIs arbeiten und dabei optimale Benutzeroberflächen für AI-Anwendungen schaffst.

Wir vermitteln zunächst das notwendige Generative AI-Wissen für die Schwerpunkte von AI-Backendentwicklern, um mitreden zu können: Prompts, Chats, Reasoning, RAG, Agenten und AI-Workflows. Einfache PoC-Implementierungen erfolgen dabei mit Python und den Frameworks LangChain/LangGraph, um State-of-the-Art AI-Funktionalität als REST-APIs bereitzustellen – der perfekte Anknüpfungspunkt für Angular-Entwickler:innen.

Der Fokus liegt auf modernen Frontend-Herausforderungen: optimaler API-Konsum, Streaming-Implementation für Echtzeit-Antworten, Darstellung von Reasoning-Prozessen bei Thinking-Modellen und die Erweiterung von Anwendungen um TypeScript-basierte MCP Server, die dem AI-Backend Zugriff auf Unternehmensdaten ermöglichen.

Alle Konzepte demonstrieren wir anhand eines vollständigen Enterprise-Szenarios: Ein Developer-Portal, das statische Guidelines durch AI-generierte, kontextbezogene Empfehlungen ergänzt. Das Backend verknüpft dabei Unternehmenswissen aus verschiedenen Quellen intelligent – von Wikis über Vektordatenbanken und MCP-Server bis hin zu externen Recherchen. Sie erweitern eine bestehende Angular-App um Obsidian-Integration als Wissensspeicher und lernen, wie die Zusammenarbeit zwischen AI-Backend-Teams und Frontend-Entwicklern optimal funktioniert.

Avatar for Marco Frodl

Marco Frodl

October 24, 2025
Tweet

More Decks by Marco Frodl

Other Decks in Technology

Transcript

  1. Generative AI für Angular-Entwickler:innen: Grundlagen & Backend verstehen, Frontend beherrschen

    JSDays 2025: KI-Bootcamp Marco Frodl Felix Wunderlich @marcofrodl AI Consultant AI Developer
  2. Hello, it’s me. Principal Consultant for Generative AI Thinktecture AG

    X: @marcofrodl E-Mail: [email protected] LinkedIn: https://www.linkedin.com/in/marcofrodl/ https://www.thinktecture.com/thinktects/marco-frodl/ Marco Frodl
  3. 09:00–10:30 Block 1 (1,5h) 10:30–11:00 Coffee Break 11:00–12:30 Block 2

    (1,5h) 12:30–13:30 Lunch Break 13:30–15:00 Block 3 (1,5h) 15:00–15:30 Coffee Break 15:30–17:00 Block 4 (1,5h) Workshop Timetable
  4. Workshop Landing Page You get: • Landing Page with all

    details • 6 Labs (Colab Notebook /Stackblitz) • 6 Solutions (Colab Notebook /Stackblitz) • 3 Demo Colab Notebooks • AI Endpoint Key for OVH (EU) You need: • Google account • Access to colab.google.com • Langfuse.com account https://js-days-2025.brick.do/
  5. Why is it important? Generative AI AI understands and generates

    natural language AI can access knowledge from the training phase
  6. It could be worse ACME Coding Guideline Portal QA-Workflow-Requirements for

    ACME Coding Portal • Natural language I/O • Different languages • Semantic search • Multi-source integration • Context based source selection • Source quality assessment • Source attribution • Trust level indicators • Cross-source answer synthesis • Coding Guideline Wiki via RAG • External Guidelines via RAG • Project Details via API • Project Manager Details via API • Fallback: Websearch • All integrated in current Portal
  7. One Search Box for Everything ACME – Rise of Sources

    Guidelines Wiki Angular.dev Project Management API Static RAG Trust Level General Websearch Live RAG Trust Level Live API Access Trust Level Everything Else Trust Level
  8. Backend: Python in Cloud AIaaS: OpenAI & MistralAI Frontend: with/about

    Angular LangGraph Real World Sample User: „Was ist besser signal inputs oder inputs()?“ AI: „Laut den ACME-Richtlinien sollten Signal-Inputs anstelle von `@Input()` verwendet werden.
  9. Artificial Intelligence (AI) Classification Generative AI Machine Learning Deep Learning

    GenAI Intelligent Machines Pattern Recognition in Data Pattern Recognition in unstructured Data Human language understanding and generation
  10. Natural Language is the new Code Juni 2022 Vs. September

    2025 Generiere ein Bild von einer älteren Katze im Business-Anzug, die hinter einem großen Schreibtisch in einem ledernen braunen Chefsessel sitzt und dem Betrachter direkt in die Augen schaut. Auf dem Schreibtisch sehen wir einen Macbook Pro und eine moderne Schreibtischlampe. Die Wand hinter der Katze ist geschmückt mit Urkunden und einem Familienfoto, die alle gerahmt sind.
  11. Natural Language is the new Code me standing in front

    of a back to the future time machine; parking lot from the photo in the back
  12. Natural Language is the new Code I'm looking a bit

    surprised because of the DMC in the background. Time: golden hour.
  13. Natural Language is the new Code User Input GenAI Processing

    Generated Output LLM https://artificialanalysis.ai/
  14. It’s just text – “Language” ▪ LLMs can understand text

    – this changes a lot ▪ LLMs generate text based on input ▪ Most LLMs can break down complex problems using CoT ▪ Some LLMs can reason about the best strategy to solve a problem ▪ Prompts are the universal interface (“UI”) → unstructured text with semantics ▪ Human language evolves as a first-class citizen in software architecture Large Language Models
  15. It’s just text – “Language” ▪ LLMs are programs ▪

    LLMs are highly specialized neural networks ▪ LLMs are pre-filled with a parametric knowledge (“frozen knowledge”) ▪ LLMs need a lot of resources to be operated ▪ LLMs have an API to be used through Large Language Models
  16. Neural networks in a nutshell Input layer Output layer Hidden

    layers ▪ Neural networks are (just) data ▪ Layout parameters ▪ Define how many layers ▪ How many nodes per layer ▪ How nodes are connected ▪ LLMs usually are sparsely connected
  17. Inside the Transformer Architecture “Attending a conference expands your” •

    Possibility 1 • Possibility 2 • Possibility 3 • Possibility 4 • Possibility 5 • Possibility 6 • … Large Language Models
  18. Die schwarze Katze schläft auf dem Sofa im Wohnzimmer. Tokenizer

    Microsoft Phi-2 Tokens in Text & as Values 32423, 5513, 5767, 2736, 8595, 2736, 5513, 75, 11033, 701, 257, 3046, 1357, 1406, 13331, 545, 370, 1562, 89, 10957, 13 Token Count 21 OpenAI GPT-3.5T 18674, 82928, 3059, 17816, 3059, 5817, 44283, 728, 7367, 2486, 61948, 737, 53895, 65574, 13 15 OpenAI GPT-4o 8796, 193407, 181909, 161594, 826, 2933, 2019, 71738, 770, 138431, 13 11 https://tiktokenizer.vercel.app/ OpenAI GPT-3.5T 791, 3776, 8415, 374, 21811, 389, 279, 32169, 304, 279, 5496, 3130, 13 13
  19. Definition “The context window of LLMs is the number of

    tokens the model can take as input when generating responses.” Context Window Size
  20. Definition A Mixture of Experts (MoE) routes each token to

    one or a few expert feed-forward networks at inference, so only a small subset of parameters is actively computed per token. Despite sparse compute, all experts must be resident in memory, making VRAM usage similar to a much larger dense model. The shared attention and routing plus limited expert activations yield throughput comparable to a smaller dense model, while incurring extra communication for moving tokens to their chosen experts. Mixture of Experts
  21. Let’s say “Hello” to a LLM Large Language Models OpenAI

    Anthropic MistralAI https://github.com/jamesmurdza/llm-api-examples/blob/main/README-python.md
  22. Your requirements are crucial Model Selection Performance (Tokens per Second

    - t/s) – Speed of response generation. Pricing – Pay-per-use, subscription, on-premises costs, and overall cost efficiency. Reasoning Capabilities – Logical reasoning, problem-solving, and multi-step thought processes. Tool Use – Ability to use external tools (e.g., APIs, code execution, web browsing, database querying). Context Window Size – Maximum number of tokens the model can process at once. License & Cost – Open-source vs. proprietary, usage fees, and commercial viability. Fine-tuning & Adaptability – Ability to fine-tune on domain-specific data. On-Premises Deployment – Availability for local hosting instead of cloud-only access. Multimodal Capabilities – Ability to process text, images, audio, or video. Prompt Caching & Efficiency – Ability to reduce redundant processing, and optimize query handling. Multilingual Support – Capability to understand and generate multiple languages. Data Privacy & Compliance – Adherence to GDPR, HIPAA, and other regulatory requirements. Efficiency (Compute & Memory Requirements) – Hardware requirements for inference and training.
  23. • 7 Open Source Models • 9 Closed Source Models

    • 2 Models for Code Generation • 2 Embedding Model • Fine-Tuning API • Models fluent in English, French, Italian, German, Spanish • Similar prompting • Run: Mistral AI, Azure, AWS, On-Prem • Located in Paris/France • Your data will not used for training (API)
  24. Split your GenAI tasks Model Selection One big prompt to

    solve your task completely Requires a powerful model Large LLM: very expensive Tool Calling (Medium LLM) Extraction (Small LLM) Classification (Small LLM) Answering (Medium/Large LLM)
  25. Your Forms can do more Challenges • Training: Users need

    to understand what information to enter where • Special Cases: Input of unstructured or missing data takes longer • Hands free: Using a keyboard does’nt fit the working environment GenAI Solution • Creates a link between input data and form details • Knowledge of many languages available • Can use voice input as source Smart Web-Apps
  26. 87 ▪ Classic search: lexical ▪ Compares words, parts of

    words and variants ▪ Classic SQL: WHERE ‘content’ LIKE ‘%searchterm%’ ▪ We can search only for things where we know that its somewhere in the text ▪ New: Semantic search ▪ Compares for the same contextual meaning ▪ “Das Rudel rollt das runde Gerät auf dem Rasen herum” ▪ “The pack enjoys rolling a round thing on the green grass” ▪ “Die Hunde spielen auf der Wiese mit dem Ball” ▪ “The dogs play with the ball on the meadow” Semantic Search
  27. [ 0.50451 , 0.68607 , -0.59517 , -0.022801, 0.60046 ,

    -0.13498 , -0.08813 , 0.47377 , -0.61798 , -0.31012 , -0.076666, 1.493 , -0.034189, -0.98173 , 0.68229 , 0.81722 , -0.51874 , -0.31503 , -0.55809 , 0.66421 , 0.1961 , -0.13495 , -0.11476 , -0.30344 , 0.41177 , -2.223 , -1.0756 , -1.0783 , -0.34354 , 0.33505 , 1.9927 , -0.04234 , -0.64319 , 0.71125 , 0.49159 , 0.16754 , 0.34344 , -0.25663 , -0.8523 , 0.1661 , 0.40102 , 1.1685 , -1.0137 , -0.21585 , -0.15155 , 0.78321 , -0.91241 , -1.6106 , -0.64426 , -0.51042 ] Embedding-Model
  28. Vector DB https://qdrant.tech/documentation/overview/ • Efficient storage and indexing of high-dimensional

    data. • Ability to handle large-scale datasets with billions of data points. • Support for real-time analytics and queries.
  29. What is RAG? “Retrieval-Augmented Generation (RAG) extends the capabilities of

    LLMs to an organization's internal knowledge, all without the need to retrain the model.
  30. What is RAG? https://aws.amazon.com/what-is/retrieval-augmented-generation/ “Retrieval-Augmented Generation (RAG) extends the capabilities

    of LLMs to an organization's internal knowledge, all without the need to retrain the model. It references an authoritative knowledge base outside of its training data sources before generating a response”
  31. Answering Questions on Data Retrieval-augmented generation (RAG) Cleanup & Split

    Text Embedding Question Text Embedding Save Query Relevant Text Question LLM 100 Vector DB Embedding model Embedding model Indexing / Embedding QA
  32. Ask me anything Simple RAG Question Prepare Search Search Results

    Question LLM Vector DB Embedding Model Question as Vector Workflow Terms - Retriever - Chain Elements Embedding- Model Vector- DB Python LLM Langchain
  33. Hello AI Workflows Question Answer • Agentic Flows • Loosely

    coupled Nodes • Conversation History • Long-term Memory • State Management • Parallel Execution • Subgraphs • Graph Persistence • Human in the Loop • Time Traveling
  34. Enterprise AI Workflows QA-Workflow-Requirements for Unified company knowledge access •

    Natural language I/O • Different languages • Semantic search • Multi-source integration • Context based source selection • Source quality assessment • Source attribution • Trust level indicators • Cross-source answer synthesis • Web search capability • RAG integration (databases) • API connectivity (realtime data) • AI-driven API sequencing • Fallback workflow paths • Workflow orchestration logic • Plug-and-play source extension
  35. Coding Guideline Wiki ACME – Rise of Sources Idea behind

    this approach • Easy creation of Articles • Workflow: Draft, Review, Publish • Revisions • Link Management • Author Management • Tags & Categories • APIs: REST, RSS, Custom • Open Source • Regular Updates • Plugin Ecosystem = Great Authoring Experience and Headless Content Source
  36. Business RAG - Simple AI Workflows Question Search Documents Generate

    Answer Answer AI (LLM) Vector DB Embedding Model Vector Benefits: • Semantic Search • Short, concise answers • Input Language <> Document Language • Multiple Input Languages
  37. I wanna know Question Answer • Was ist besser signal

    inputs oder inputs()? • Wie viele Komponenten brauche ich mindestens für das Setup von Routing? • Höhe des Berliner Fernsehturms • Wer leitet das Post-Projekt
  38. One Search Box for Everything ACME – Rise of Sources

    Guidelines Wiki Angular.dev Project Management API Static RAG Trust Level General Websearch Live RAG Trust Level Live API Access Trust Level Everything Else Trust Level
  39. ▪ Idea: Give LLM more capabilities ▪ To access data

    and other functionality ▪ Within your applications and environments Extending capabilities “Do x!” LLM “Do x!” System prompt Tool 1 metadata Tool 2 metadata... { “answer”: “toolcall”, “tool” : “tool1” “args”: […] }
  40. Tool Calling in Action LLM My code Query Some API

    Some database Prompt Tools Final answer Answer
  41. An open standard for connecting AI to data What is

    MCP? MCP is an open protocol that standardizes how applications offer Tools, Resources, and Prompts to LLMs and agentic workflows. Created by Anthropic as an open source universal standard, MCP enables applications to expose structured capabilities including tools, resources, and prompts, allowing LLMs and agents to actively leverage these capabilities rather than just receiving passive context.
  42. An open standard for connecting AI to data What is

    MCP? Think of MCP as: USB-C for AI Universal connector standard HTTP for LLM context Common protocol for data access npm for AI tools Discoverable, reusable components
  43. Three core components working together MCP Architecture MCP Server Math-Tools:

    add(), divide() MCP Client App/Agent Provide context, tools, and prompts to clients Each server can offer multiple ressources Maintain 1:1 connections with servers, inside the host app Uses LLM with context from MCP clients Email-Prompts: support_answer Claude Desktop App Client Python MCP Client Claude Desktop or Web App Python LangGraph App
  44. Complete request/response cycle MCP Request Flow MCP Server MCP Client

    App/Agent Request capabilities Return tools, resources, prompts LLM decides action Request execution Establish connection List capabilities Execute request Return result LLM incorporates result
  45. Three ways to communicate with MCP servers MCP Transport Protocols

    Stdio (Standard In/Out) Best for: Local processes, CLI tools, development Example: Local Code Review MCP für IDE HTTPS with Streaming Best for: Remote servers, cloud deployments, scalability Example: Enterprise MCP services behind load balancers SSE (Server-Sent Events) Best for: Real-time updates, long-lived connections Example: Monitoring systems, live data feeds
  46. Three primitive types MCP servers can expose MCP Resources: Tools,

    Resources, Prompts Prompts Resources Tools Reusable templates for LLMs Data and context LLMs can read Functions LLMs can invoke When: Dynamic actions, mutations, computations Examples: send_email() query_database() create_ticket() When: Static/semi-static data and context for workflows Examples: file://docs/api.md db://customers knowledge_base:// When: Standardized workflows, best practices Examples: code_review bug_analysis release_notes
  47. MCP as internal service layer for AI capabilities Benefits: MCP

    - Internal Use Cases Teams deliver tool-calling logic wrapped as MCP services Other teams consume these services without custom integration code ✓ No custom client code needed ✓ Standard tooling and monitoring ✓ Easy discovery of available services ✓ Decoupled teams and faster iteration ✓ Reusable AI capabilities across projects ✓ Centralized governance and security
  48. Enable customer AI workflows without complex APIs MCP - External

    Use Cases Example Scenarios: Let customers interact with YOUR data from THEIR AI workflows MCP as a customer-facing interface, not just internal tooling ✓ SaaS: Expose customer's data via MCP so they can query it from Claude/ChatGPT ✓ E-commerce: Let customers' AI assistants check orders, inventory, recommendations ✓ Financial Services: Secure account data access for AI-powered financial advisors
  49. External Sources Internal Sources AI Workflows with LangGraph Question Wiki

    Trust Level: 1 Answer Websearch Trust Level: 3 Documents Trust Level: 2 API A Projects (T1) API B Contacts (T1) Wer leitet das Post-Projekt?
  50. External Sources Internal Sources AI Workflows with LangGraph Question Wiki

    Trust Level: 1 Answer Websearch Trust Level: 3 Documents Trust Level: 2 API A Projects (T1) API B Contacts (T1) ? Wer leitet das Post-Projekt?
  51. External Sources Internal Sources AI Workflows with LangGraph Question Wiki

    Trust Level: 1 Answer Websearch Trust Level: 3 Documents Trust Level: 2 API A Projects (T1) API B Contacts (T1) ? ? Wer leitet das Post-Projekt?
  52. External Sources Internal Sources AI Workflows with LangGraph Question Wiki

    Trust Level: 1 Answer Websearch Trust Level: 3 Documents Trust Level: 2 API A Projects (T1) API B Contacts (T1) ? ? ? Wer leitet das Post-Projekt?
  53. External Sources Internal Sources AI Workflows with LangGraph Question Wiki

    Trust Level: 1 Answer Websearch Trust Level: 3 Documents Trust Level: 2 API A Projects (T1) API B Contacts (T1) ? ? ? ? Wer leitet das Post-Projekt?
  54. External Sources Internal Sources AI Workflows with LangGraph Question Wiki

    Trust Level: 1 Answer AI Topic Router Websearch Trust Level: 3 AI Content Grader Documents Trust Level: 2 AI API Sequencing AI Generate API A Projects (T1) API B Contacts (T1) Wer leitet das Post-Projekt?