Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Aprendizajes de trabajo en bibliotecas digitales
Search
Mauricio Giraldo
November 13, 2019
Technology
0
130
Aprendizajes de trabajo en bibliotecas digitales
Cinco cosas que he aprendido en ocho años de trabajo en bibliotecas digitales
Mauricio Giraldo
November 13, 2019
Tweet
Share
More Decks by Mauricio Giraldo
See All by Mauricio Giraldo
Aereo: An experimental bird’s eye view of the digital collections from the State Library of New South Wales
mgiraldo
0
320
From food to buildings and beyond: what happens when a library opens its digital collections to human-computer collaboration
mgiraldo
2
160
building inspector
mgiraldo
0
87
Talk at the NYU ITP Data Art class / Spring 2017
mgiraldo
0
140
Humanidades Digitales en los laboratorios de la Biblioteca Pública de New York
mgiraldo
0
76
FOSS4G Nara/Tokyo
mgiraldo
0
1.8k
Human-Computer Collaboration at NYPL Labs
mgiraldo
2
420
NYPL Labs @ Eyeo Festival 2015
mgiraldo
1
670
NYPL Labs Design @ MITH Digital Dialogues
mgiraldo
0
530
Other Decks in Technology
See All in Technology
Engineer Career Talk
lycorp_recruit_jp
0
160
OCI Network Firewall 概要
oracle4engineer
PRO
0
4.1k
隣接領域をBeyondするFinatextのエンジニア組織設計 / beyond-engineering-areas
stajima
1
270
複雑なState管理からの脱却
sansantech
PRO
1
140
第1回 国土交通省 データコンペ参加者向け勉強会③- Snowflake x estie編 -
estie
0
130
RubyのWebアプリケーションを50倍速くする方法 / How to Make a Ruby Web Application 50 Times Faster
hogelog
3
940
障害対応指揮の意思決定と情報共有における価値観 / Waroom Meetup #2
arthur1
5
470
透過型SMTPプロキシによる送信メールの可観測性向上: Update Edition / Improved observability of outgoing emails with transparent smtp proxy: Update edition
linyows
2
210
Shopifyアプリ開発における Shopifyの機能活用
sonatard
4
250
マルチプロダクトな開発組織で 「開発生産性」に向き合うために試みたこと / Improving Multi-Product Dev Productivity
sugamasao
1
300
Lambdaと地方とコミュニティ
miu_crescent
2
370
Terraform未経験の御様に対してどの ように導⼊を進めていったか
tkikuchi
2
430
Featured
See All Featured
Scaling GitHub
holman
458
140k
10 Git Anti Patterns You Should be Aware of
lemiorhan
654
59k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
226
22k
Designing for humans not robots
tammielis
250
25k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
232
17k
The Cult of Friendly URLs
andyhume
78
6k
Art, The Web, and Tiny UX
lynnandtonic
297
20k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
31
2.7k
Site-Speed That Sticks
csswizardry
0
24
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
28
9.1k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
93
16k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
10
720
Transcript
mauricio giraldo arteaga @mgiraldo algunas cosas que he aprendido hasta
ahora red de bibliotecas de bogotá, noviembre 2019
hola
mi nombre es mauricio
None
None
None
None
foto: wallyg en flickr
None
None
llevo en esto cerca de ocho años* *el fellowship empieza
en 2020
algunas cosas que he aprendido hasta el momento …y que
creo pueden beneficiar a la red de bibliotecas de bogotá
cinco cosas
prácticas
quizás obvias
1
tener una visión clara* *y no me refiero a visiones
grandilocuentes
…con capacidad de ejecución* *con presupuesto y prestando atención a
una diversidad de experiencias
None
None
None
foto: myleen hollero
NYPL Labs
¿qué hacer cuando todo esté digitalizado?
None
None
None
None
None
None
None
las expectativas* están establecidas por terceros *y los puntos de
referencia de interacción
None
es un reto común en colecciones digitales
None
None
dependen de metadatos de texto
None
None
None
None
None
None
es imposible hacer descripciones exhaustivas pero es un trabajo valioso
además es lenguaje técnico-bibliográfico no el lenguaje al que estamos
acostumbrados
None
tecnología digital para automatizar la creación* de metadatos *y mejorar
los existentes
None
None
2
empezar con prototipos
empezar (y continuar) con prototipos
None
None
None
None
None
“¿qué tal si…?”
None
None
un fin de semana después…
None
reducir la labor a sus componentes básicos
los prototipos ayudan a establecer viabilidad
los prototipos ayudan a comunicar la idea
–@mikeindustries “un prototipo vale mil reuniones”
None
“¡excelente! es cuestión de refinarlo y ya”
3
el refinamiento toma tiempo
el refinamiento toma (un montón de) tiempo
None
tres meses después…
None
stereo.nypl.org
None
None
en todo caso, tres meses no es tanto tiempo cuando
se está acostumbrado a proyectos que tardan años
87,000 imágenes creadas
el refinamiento genera valor* *cuando se hace de manera informada
por cierto, el refinado puede esperar
None
podría beneficiarse de un rediseño
None
None
1.1 millón platos más y eso que la biblioteca ya
no digitaliza menús con la misma prioridad
@katie_rawson y @trevormunoz
@_BadTaste_ por @bibliotechy
refinar funciona
…pero toma tiempo
“bueno… lo tendré en cuenta en planeación”
4
todo toma más tiempo que el estimado
las gente es mala para hacer estimados* *S. Grimstada, M.
Jørgensena, 2007; I. Newby-Clark, M. Ross, R. Buehler, D. Koehler, D. Griffin, 2007; V. Mahnič, T. Hovelja, 2012; y más…
(sí, aún en desarrollo “ágil”)
no puede estimar lo que no ha hecho
–@jasonfried “planear es adivinar”
rediseño de colecciones digitales nypl ca. 2005
None
None
None
“tomémonos 90 días para rediseñar esto”
(una bandera roja gigante)
siempre habrá sorpresas usualmente de las que no son bienvenidas
None
None
None
None
“tenemos que incluir esta funcionalidad”
18 meses después…
None
None
None
None
None
None
None
digitalcollections.nypl.org
empezar con un alcance o una fecha
…pero no ambos
pero no se demore demasiado en mostrar algo a sus
usuarios
–Reid Hoffman “si no te avergüenza la primera versión de
tu producto, lo has lanzado demasiado tarde”
…pero tómese cuanto sea necesario* *ver punto sobre el refinamiento
…y prepárese para las sorpresas
5
los “hackatones” son puntos de partida* *no esperar proyectos terminados
listos para producción
None
None
None
None
planta material uso calles dirección pisos nombre clase geo localización
año claraboyas jardines
None
None
“¿qué tal si…?”
None
luego de preguntar a muchos expertos y no recibir ayuda
alguna
None
¿será que podemos automatizarlo?
None
None
None
None
None
None
None
None
cinco semanas después de refinamiento del proceso
None
github.com/NYPL/map-vectorizer
None
más de 80 mil edificios en un día en lugar
de años
None
“¿qué tan bueno es el algoritmo?”
…hicimos un prototipo
None
None
buildinginspector.nypl.org
dos meses después…
None
None
84%: SI 7%: ARREGLAR o 91% suficientemente bueno
None
…así que hicimos más prototipos
None
2 millones de clasificaciones en unos 24 meses
None
None
None
None
spacetime.nypl.org
foto: knight foundation
None
None
None
None
None
None
…y todo empezó con un prototipo en un hackatón
resumen
tener una visión clara y ejecutable empezar (y continuar) con
prototipos el refinamiento toma tiempo todo toma más tiempo que el estimado los “hackatones” son puntos de partida
@mgiraldo que gracias