Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Aprendizajes de trabajo en bibliotecas digitales
Search
Mauricio Giraldo
November 13, 2019
Technology
0
160
Aprendizajes de trabajo en bibliotecas digitales
Cinco cosas que he aprendido en ocho años de trabajo en bibliotecas digitales
Mauricio Giraldo
November 13, 2019
Tweet
Share
More Decks by Mauricio Giraldo
See All by Mauricio Giraldo
Aereo: An experimental bird’s eye view of the digital collections from the State Library of New South Wales
mgiraldo
0
350
From food to buildings and beyond: what happens when a library opens its digital collections to human-computer collaboration
mgiraldo
2
180
building inspector
mgiraldo
0
94
Talk at the NYU ITP Data Art class / Spring 2017
mgiraldo
0
170
Humanidades Digitales en los laboratorios de la Biblioteca Pública de New York
mgiraldo
0
100
FOSS4G Nara/Tokyo
mgiraldo
0
1.9k
Human-Computer Collaboration at NYPL Labs
mgiraldo
2
470
NYPL Labs @ Eyeo Festival 2015
mgiraldo
1
730
NYPL Labs Design @ MITH Digital Dialogues
mgiraldo
0
710
Other Decks in Technology
See All in Technology
GC25 Recap+: Advancing Go Garbage Collection with Green Tea
logica0419
1
420
組織観点からIAM Identity CenterとIAMの設計を考える
nrinetcom
PRO
1
180
許しとアジャイル
jnuank
1
130
リーダーになったら未来を語れるようになろう/Speak the Future
sanogemaru
0
280
Goにおける 生成AIによるコード生成の ベンチマーク評価入門
daisuketakeda
2
110
Why React!?? Next.jsそしてReactを改めてイチから選ぶ
ypresto
10
4.5k
Azure Well-Architected Framework入門
tomokusaba
1
310
SREとソフトウェア開発者の合同チームはどのようにS3のコストを削減したか?
muziyoshiz
1
100
後進育成のしくじり〜任せるスキルとリーダーシップの両立〜
matsu0228
7
2.5k
神回のメカニズムと再現方法/Mechanisms and Playbook for Kamikai scrumat2025
moriyuya
4
570
関係性が駆動するアジャイル──GPTに人格を与えたら、対話を通してふりかえりを習慣化できた話
mhlyc
0
130
JAZUG 15周年記念 × JAT「AI Agent開発者必見:"今"のOracle技術で拡張するAzure × OCIの共存アーキテクチャ」
shisyu_gaku
0
120
Featured
See All Featured
Learning to Love Humans: Emotional Interface Design
aarron
274
40k
Java REST API Framework Comparison - PWX 2021
mraible
33
8.8k
The Cost Of JavaScript in 2023
addyosmani
53
9k
Product Roadmaps are Hard
iamctodd
PRO
54
11k
Principles of Awesome APIs and How to Build Them.
keavy
127
17k
Designing Experiences People Love
moore
142
24k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
127
53k
The Language of Interfaces
destraynor
162
25k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
132
19k
Visualization
eitanlees
148
16k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
46
7.6k
Testing 201, or: Great Expectations
jmmastey
45
7.7k
Transcript
mauricio giraldo arteaga @mgiraldo algunas cosas que he aprendido hasta
ahora red de bibliotecas de bogotá, noviembre 2019
hola
mi nombre es mauricio
None
None
None
None
foto: wallyg en flickr
None
None
llevo en esto cerca de ocho años* *el fellowship empieza
en 2020
algunas cosas que he aprendido hasta el momento …y que
creo pueden beneficiar a la red de bibliotecas de bogotá
cinco cosas
prácticas
quizás obvias
1
tener una visión clara* *y no me refiero a visiones
grandilocuentes
…con capacidad de ejecución* *con presupuesto y prestando atención a
una diversidad de experiencias
None
None
None
foto: myleen hollero
NYPL Labs
¿qué hacer cuando todo esté digitalizado?
None
None
None
None
None
None
None
las expectativas* están establecidas por terceros *y los puntos de
referencia de interacción
None
es un reto común en colecciones digitales
None
None
dependen de metadatos de texto
None
None
None
None
None
None
es imposible hacer descripciones exhaustivas pero es un trabajo valioso
además es lenguaje técnico-bibliográfico no el lenguaje al que estamos
acostumbrados
None
tecnología digital para automatizar la creación* de metadatos *y mejorar
los existentes
None
None
2
empezar con prototipos
empezar (y continuar) con prototipos
None
None
None
None
None
“¿qué tal si…?”
None
None
un fin de semana después…
None
reducir la labor a sus componentes básicos
los prototipos ayudan a establecer viabilidad
los prototipos ayudan a comunicar la idea
–@mikeindustries “un prototipo vale mil reuniones”
None
“¡excelente! es cuestión de refinarlo y ya”
3
el refinamiento toma tiempo
el refinamiento toma (un montón de) tiempo
None
tres meses después…
None
stereo.nypl.org
None
None
en todo caso, tres meses no es tanto tiempo cuando
se está acostumbrado a proyectos que tardan años
87,000 imágenes creadas
el refinamiento genera valor* *cuando se hace de manera informada
por cierto, el refinado puede esperar
None
podría beneficiarse de un rediseño
None
None
1.1 millón platos más y eso que la biblioteca ya
no digitaliza menús con la misma prioridad
@katie_rawson y @trevormunoz
@_BadTaste_ por @bibliotechy
refinar funciona
…pero toma tiempo
“bueno… lo tendré en cuenta en planeación”
4
todo toma más tiempo que el estimado
las gente es mala para hacer estimados* *S. Grimstada, M.
Jørgensena, 2007; I. Newby-Clark, M. Ross, R. Buehler, D. Koehler, D. Griffin, 2007; V. Mahnič, T. Hovelja, 2012; y más…
(sí, aún en desarrollo “ágil”)
no puede estimar lo que no ha hecho
–@jasonfried “planear es adivinar”
rediseño de colecciones digitales nypl ca. 2005
None
None
None
“tomémonos 90 días para rediseñar esto”
(una bandera roja gigante)
siempre habrá sorpresas usualmente de las que no son bienvenidas
None
None
None
None
“tenemos que incluir esta funcionalidad”
18 meses después…
None
None
None
None
None
None
None
digitalcollections.nypl.org
empezar con un alcance o una fecha
…pero no ambos
pero no se demore demasiado en mostrar algo a sus
usuarios
–Reid Hoffman “si no te avergüenza la primera versión de
tu producto, lo has lanzado demasiado tarde”
…pero tómese cuanto sea necesario* *ver punto sobre el refinamiento
…y prepárese para las sorpresas
5
los “hackatones” son puntos de partida* *no esperar proyectos terminados
listos para producción
None
None
None
None
planta material uso calles dirección pisos nombre clase geo localización
año claraboyas jardines
None
None
“¿qué tal si…?”
None
luego de preguntar a muchos expertos y no recibir ayuda
alguna
None
¿será que podemos automatizarlo?
None
None
None
None
None
None
None
None
cinco semanas después de refinamiento del proceso
None
github.com/NYPL/map-vectorizer
None
más de 80 mil edificios en un día en lugar
de años
None
“¿qué tan bueno es el algoritmo?”
…hicimos un prototipo
None
None
buildinginspector.nypl.org
dos meses después…
None
None
84%: SI 7%: ARREGLAR o 91% suficientemente bueno
None
…así que hicimos más prototipos
None
2 millones de clasificaciones en unos 24 meses
None
None
None
None
spacetime.nypl.org
foto: knight foundation
None
None
None
None
None
None
…y todo empezó con un prototipo en un hackatón
resumen
tener una visión clara y ejecutable empezar (y continuar) con
prototipos el refinamiento toma tiempo todo toma más tiempo que el estimado los “hackatones” son puntos de partida
@mgiraldo que gracias