Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
B3 コアタイム 第6回目 ( 2014年12月09日(火) )
Search
MIKAMI-YUKI
December 08, 2014
Education
0
160
B3 コアタイム 第6回目 ( 2014年12月09日(火) )
MIKAMI-YUKI
December 08, 2014
Tweet
Share
More Decks by MIKAMI-YUKI
See All by MIKAMI-YUKI
2016年_年次大会_発表資料
mikamiy
0
130
文献紹介_10_意味的類似性と多義解消を用いた文書検索手法
mikamiy
0
310
文献紹介_9_コーパスに基づく動詞の多義解消
mikamiy
0
120
文献紹介_8_単語単位による日本語言語モデルの検討
mikamiy
0
88
文献紹介_7_自動獲得した未知語の読み・文脈情報による仮名漢字変換
mikamiy
0
96
文献紹介_6_複数の言語的特徴を用いた日本語述部の同義判定
mikamiy
0
100
文献紹介_5_マイクロブログにおける感情・コミュニケーション・動作タイプの推定に基づく顔文字の推薦
mikamiy
0
130
文献紹介_4_結合価パターンを用いた仮名漢字変換候補の選択
mikamiy
0
400
文献紹介_3_絵本のテキストを対象とした形態素解析
mikamiy
1
420
Other Decks in Education
See All in Education
AIの時代こそ、考える知的学習術
yum3
2
170
2025年度春学期 統計学 第10回 分布の推測とは ー 標本調査,度数分布と確率分布 (2025. 6. 12)
akiraasano
PRO
0
140
データ分析
takenawa
0
6k
自己紹介 / who-am-i
yasulab
PRO
3
5.2k
America and the World
oripsolob
0
510
Constructing a Custom TeX Ecosystem for Educational Institutions—Beyond Academic Typesetting
doratex
1
9.8k
予習動画
takenawa
0
6.5k
20250625_なんでもCopilot 一年の振り返り
ponponmikankan
0
210
GitHubとAzureを使って開発者になろう
ymd65536
1
110
サンキッズゾーン 春日井駅前 ご案内
sanyohomes
0
380
生成AIとの上手な付き合い方【公開版】/ How to Get Along Well with Generative AI (Public Version)
handlename
0
480
i-GIP 2025 中高生のみなさんへ資料
202200
0
490
Featured
See All Featured
RailsConf 2023
tenderlove
30
1.1k
Designing for Performance
lara
610
69k
Statistics for Hackers
jakevdp
799
220k
What's in a price? How to price your products and services
michaelherold
246
12k
Done Done
chrislema
184
16k
Product Roadmaps are Hard
iamctodd
PRO
54
11k
Scaling GitHub
holman
459
140k
Building Better People: How to give real-time feedback that sticks.
wjessup
367
19k
Art, The Web, and Tiny UX
lynnandtonic
299
21k
Making the Leap to Tech Lead
cromwellryan
134
9.4k
Build your cross-platform service in a week with App Engine
jlugia
231
18k
GraphQLの誤解/rethinking-graphql
sonatard
71
11k
Transcript
「入門 自然言語処理」 5章:単語の分類とタグ付け B3 三上侑城
もくじ •タガーの利用 •タグ付きコーパス •ディクショナリ(重要) •自動タグ付け •Nグラムタグ付け
タガーの利用 ・品詞タガー それぞれの単語に品詞のタグを付ける。 >>> text = nltk.word_tokenize(“And now for something
completely different") >>> nltk.pos_tag(text)
タガーの利用 ここで出てくる分類名の意味 詳細は以下のようにタグを指定する。 >>> nltk.help.upenn_tagset(’CC’) 分類名 意味 CC 等位接続詞 RB
副詞 IN 前置詞 NN 名詞 JJ 形容詞
タグ付きコーパス ・str2suple() タグ付きトークンに変換 >>> tagged_token = nltk.tag.str2tuple('fly/NN') >>> tagged_token >>>
tagged_token[0] >>> tagged_token[1]
タグ付きコーパス ・タグ付きコーパスを読み込む NLTKにはタグ付きのサンプルがある。 例 >>> nltk.corpus.brown.tagged_words() >>> nltk.corpus.nps_chat.tagged_words()
ディクショナリ(P204~) ・ディクショナリ型と呼ばれるデータ型 ・リストには整数の添字を使ってアクセス ・マップ、ハッシュ、ハッシュマップとも 呼ばれる
ディクショナリ >>> pos = {} >>> pos >>> pos['colorless'] =
'ADJ' >>> pos >>> pos['ideas'] = 'N' >>> pos['sleep'] = 'V' >>> pos['furiously'] = 'ADV' >>> pos
ディクショナリ ・キー指定で値を得る >>> pos['ideas'] >>>pos['colorless'] ・ないものはエラーが出る。 >>>pos['green']
ディクショナリ ・リストに変換 >>> list(pos) ・キーを整列させる >>> sorted(pos)
ディクショナリ ・最後にsがつくものを探す >>> [w for w in pos if w.endswith('s')]
・ディクショナリの中身を全て表示 >>> for word in sorted(pos): ... print word + ":", pos[word]
ディクショナリ ・キーの一覧メソッド >>> pos.keys() ・値の一覧メソッド >>> pos.values() ・ペアの一覧メソッド >>> pos.items()
ディクショナリ ・ディクショナリを定義 >>> pos = {'colorless':'ADJ','ideas':'N','sleep' :'V','furiously':'ADV'}
ディクショナリ ・デフォルトディクショナリ 存在しないものにアクセス 通常→エラー デフォルトディクショナリ→自動生成 nltk.defaultdict()を使用する
ディクショナリ ・デフォルトディクショナリ 整数型の場合 >>> freq1 = {} >>> freq1['colorless'] =
4 >>> freq1['ideas'] #エラーが出る >>> freq2 = nltk.defaultdict(int) >>> freq2['colorless'] = 4 >>> freq2[‘ideas’] #エラーは出ない
ディクショナリ ・デフォルトディクショナリ リスト型の場合 >>> pos1 = {} >>> pos1['sleep'] =
['N','V'] >>> pos1['ideas'] #エラーが出る >>> pos2 = nltk.defaultdict(list) >>> pos2['sleep'] = ['N','V'] >>> pos2[‘ideas’] #エラーは出ない
ディクショナリ ・デフォルトディクショナリ デフォルト値の設定 >>> pos = nltk.defaultdict(lambda:'N') >>> pos['colorless'] =
'ADJ' >>> pos['blog'] #Nが自動的に入る >>> pos.items()
自動タグ付け ・テキストに自動的に品詞タグを付け てくれる。 ・様々なタガーがあり、それぞれに 特徴がある。 ・必要となった時に参照してもらい たい(P214~)
Nグラムタグ付け ・文脈を考慮してタグを付けてくれる ・いくつかのタガーを組み合わせて 使い、精度を高められる。 ・必要となった時に参照してもらい たい(P219~)