Upgrade to Pro — share decks privately, control downloads, hide ads and more …

非線形最適化の基礎〜KKT条件〜

Sponsored · Your Podcast. Everywhere. Effortlessly. Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
Avatar for miruca miruca
March 19, 2019

 非線形最適化の基礎〜KKT条件〜

非線形最適化問題に対する最も代表的な最適性の必要条件(KKT条件)に関するスライド

Avatar for miruca

miruca

March 19, 2019
Tweet

More Decks by miruca

Other Decks in Science

Transcript

  1. ͜ͷεϥΠυͷ໨త ʰඇઢܗ࠷దԽͷجૅʱ(෱ౡ, 2001) ͷୈ 3 ষʹؔͯ͠ • ๏ઢਲ਼Λ༻͍ͨ࠷దੑ৚݅ʹ͍ͭͯཧղ͢Δ • ෆ౳੍ࣜ໿ΛؚΉ࠷దԽ໰୊ʹର͢Δ

    KKT ৚݅Λཧղ͢Δ • KKT ৚݅ͷԾఆͰ͋Δ੍໿૝ఆʹ͍ͭͯཧղ͢Δ ˞஫ҙ • ຊεϥΠυͷఆཧ౳ͷ൪߸͸ʰඇઢܗ࠷దԽͷجૅʱʹ४ͣΔ • ਤ͸ͳ͍ͷͰదٓखΛಈ͔͠ͳ͕Βཧղ͢Δ͜ͱΛਪ঑ • (ԋश) ͱॻ͍ͨ΋ͷ͸෇࿥ʹղ౴Λ෇ͨ͠
  2. ઀ਲ਼ͱ࠷దੑ৚݅ KKT ৚݅ ੍໿૝ఆ ࠷దԽ໰୊ ࣍ͷ࠷దԽ໰୊Λߟ͑Δɿ minimize x∈Rn f(x) subject

    to x ∈ S. (1) ͜͜ʹɼؔ਺ f : Rn → R ͱू߹ S ⫅ Rn ͸ॴ༩Ͱ͋Δɽ • ੍໿৚݅ x ∈ S Λຬͨ͢ϕΫτϧ x Λ࣮ޮՄೳղͱ͍͍ɼ࣮ ޮՄೳղશମͷू߹Λ࣮ޮՄೳྖҬͱ͍͏ɽ • S = Rn ͷ৔߹ɼ໰୊ (1) ͸੍໿ͳ͠࠷దԽ໰୊ͱݺ͹ΕΔɽ • ؔ਺ f ͕ತؔ਺Ͱɼू߹ S ͕ತू߹Ͱ͋Δͱ͖ɼ໰୊ (1) ͸ತ ܭը໰୊ (convex programming problem) ͱݺ͹ΕΔɽ 5 / 21
  3. ઀ਲ਼ͱ࠷దੑ৚݅ KKT ৚݅ ੍໿૝ఆ ࠷దղͷछྨ • ࣮ޮՄೳղ x ∈ S

    ʹରͯ͠ɼ͋Δ ε > 0 ͕ଘࡏͯ͠ f(x) ≧ f(x) (∀x ∈ S ∩ B(x, ε)) (2) ͕੒ཱ͢Δͱ͖ɼx Λ໰୊ (1) ͷہॴత࠷దղͱ͍͏ *1)ɽ • ೚ҙͷ ε > 0 ʹରͯࣜ͠ (2) ͕੒ཱ͢Δɼ͢ͳΘͪ f(x) ≧ f(x⋆) (∀x ∈ ε) (3) Ͱ͋Δͱ͖ɼx⋆ ΛେҬత࠷దղͱ͍͏ɽ ˞ େҬత࠷దղ ⇒ ہॴత࠷దղ (ٯ͸ඞͣ͠΋੒Γཱͨͳ͍) *1)த৺͕ x ∈ Rn Ͱ൒ܘ͕ r > 0 ͷٿΛ B(x, r) = {y ∈ Rn | ∥y − x∥ < r} ͱॻ͖ɼ ։ٿͱݺͿɽ 6 / 21
  4. ઀ਲ਼ͱ࠷దੑ৚݅ KKT ৚݅ ੍໿૝ఆ ತܭը໰୊ʹ͓͚Δ࠷దղ ʮہॴత࠷దղ ⇒ େҬత࠷దղʯΛอূͰ͖Δ৔߹͕͋Δɽ ఆཧ 3.1

    ࠷దԽ໰୊ (1) ʹ͓͍ͯɼf ͸ತؔ਺ɼS ͸ತू߹ͱ͢Δɽͦͷͱ ͖ɼ໰୊ (1) ͷ೚ҙͷہॴత࠷దղ͸େҬత࠷దղͰ͋Δɽ • ূ໌͸ɼہॴత࠷దղͰ͋Δ͕େҬత࠷దղͰͳ͍Α͏ͳ఺ x ∈ S ͷଘࡏੑΛԾఆͯ͠ໃ६Λಋ͚͹Α͍ɽ(ԋश) • ࠷దղશମͷू߹͕ತू߹Ͱ͋Δ͜ͱ΋ࣔ͢͜ͱ͕Ͱ͖Δɽ • ತܭը໰୊Ͱͳ͍৔߹ɼҰൠʹ͍ͭ͘΋ͷہॴత࠷దղ͕ଘࡏ ͢ΔͷͰɽେҬత࠷దղΛٻղ͢Δ͜ͱ͸ࠔ೉Ͱ͋Δɽ → ತੑΛԾఆ͠ͳ͍໰୊ʹ͓͍ͯ͸ɼہॴత࠷దղ͕ղੳͷର৅ͱ ͳΔ৔߹͕΄ͱΜͲͰ͋Δɽ 7 / 21
  5. ઀ਲ਼ͱ࠷దੑ৚݅ KKT ৚݅ ੍໿૝ఆ ઀ਲ਼ ໰୊ (1) ʹର͢Δ࠷దੑ৚݅Λಋͨ͘ΊʹඞཁͱͳΔ֓೦Λड़΂Δɽ ఆٛ: ઀ਲ਼

    (tangent cone) ఺ x ∈ S ʹऩଋ͢Δ఺ྻ {xk} ⫅ S Λߟ͑Δɽ͜ͷͱ͖ɼ͋Δඇෛ ਺ྻ {αk} Λ༻͍ͯఆٛ͞ΕΔ఺ྻ {αk(xk − x)} ͕ऩଋ͠ɼͦͷ ۃݶ͕ y ∈ Rn ͱͳΔͱ͖ɼy Λू߹ S ͷ఺ x ʹ͓͚Δ઀ϕΫτϧ (tangent vector) ͱݺͿɽ·ͨɼS ͷ఺ x ʹ͓͚Δ઀ϕΫτϧશମ ͷू߹Λ Ts(x) ͱද͠ɼू߹ S ͷ఺ x ʹ͓͚Δ઀ਲ਼ (tangent cone) ͱݺͿɽ • ઀ਲ਼ Ts(x) ͸఺ྻΛ༻͍ͯ࣍ͷΑ͏ʹදݱ͞ΕΔ: Ts(x) := { y ∈ Rn | lim k→∞ αk(xk − x) = y, lim k→∞ xk = x, xk ∈ S, αk ≧ 0 (k = 1, 2, . . .) } . 8 / 21
  6. ઀ਲ਼ͱ࠷దੑ৚݅ KKT ৚݅ ੍໿૝ఆ ๏ઢਲ਼ ઀ਲ਼ͷۃਲ਼ʹ͍ͭͯߟ͑Δɽ ఆٛ: ๏ઢਲ਼ (normal cone)

    ઀ਲ਼ Ts(x) ͷۃਲ਼ Ts(x)⋆ Λ S ͷ x ʹ͓͚Δ๏ઢਲ਼ (normal cone) ͱݺͼɼNs(x) ͱද͢ɽNs(x) ʹଐ͢ΔϕΫτϧΛ x ʹ͓͚Δ S ͷ๏ઢϕΫτϧ (normal vector) ͱ͍͏ɽ • ๏ઢਲ਼͸࣍ͷΑ͏ʹදݱ͞ΕΔ: Ns(x) = {z ∈ Rn | ⟨z, y⟩ ≦ 0 (∀y ∈ Ts(x))} (4) • ಛʹɼू߹ S ͕ತू߹Ͱ͋Δͱ͖͸࣍ͷΑ͏ʹදݱ͞ΕΔ: Ns(x) = {z ∈ Rn | ⟨z, x − x⟩ ≦ 0 (∀x ∈ S)} (5) • ๏ઢਲ਼ Ns(x) ͸ۭͰͳ͍ดತਲ਼Ͱ͋Δ *2)ɽ *2)೚ҙͷਲ਼ C ʹର͢Δۃਲ਼ C⋆ ͸ดತਲ਼Ͱ͋ΔͨΊ (ఆཧ 2.12)ɽ 9 / 21
  7. ઀ਲ਼ͱ࠷దੑ৚݅ KKT ৚݅ ੍໿૝ఆ ࠷దੑ৚݅ ๏ઢਲ਼Λ༻͍Δ͜ͱʹΑΓɼ໰୊ (1) ʹର͢Δ࠷΋جຊతͳ࠷దੑ ৚݅Λ༩͑Δ͜ͱ͕Ͱ͖Δɽ ఆཧ

    3.3 ؔ਺ f : Rn → R ͸఺ x ∈ S ʹ͓͍ͯඍ෼Մೳͱ͢Δɽͦͷͱ͖ɼ ఺ x ͕໰୊ (1) ͷہॴత࠷దղͳΒ͹࣍ͷؔ܎͕੒Γཱͭɿ − ∇f(x) ∈ Ns(x). (6) • ࣜ (6) Λຬͨ͢఺͸໰୊ (1) ͷఀཹ఺ (stationary point) ͱݺ ͹ΕΔɽ • ࣜ (6) ͸఺ x ͕໰୊ (1) ͷہॴత࠷దղͰ͋ΔͨΊͷඞཁ৚݅ Ͱ͋Δ͕े෼৚݅Ͱ͸ͳ͍ɽ • ತܭը໰୊ͷ৔߹ɼࣜ (6) ͕࠷దੑͷඞཁे෼৚݅ͱͳΔɽ 10 / 21
  8. ઀ਲ਼ͱ࠷దੑ৚݅ KKT ৚݅ ੍໿૝ఆ ತܭը໰୊ʹ͓͚Δ࠷దੑ৚݅ ఆཧ 3.4 S ⫅ Rn

    ͸ۭͰͳ͍ತू߹ɼf : Rn → R ͸఺ x ∈ S ʹ͓͍ͯඍ෼ Մೳͳತؔ਺ͱ͢Δɽ͜ͷͱ͖ɼࣜ (6) ͸ x ͕໰୊ (1) ͷେҬత࠷ దղͰ͋ΔͨΊͷඞཁे෼৚݅Ͱ͋Δɽ ূ໌ ඞཁੑ͸໌Β͔ͳͷͰे෼ੑ͚ͩࣔͤ͹Α͍ɽ(ԋश) 11 / 21
  9. ઀ਲ਼ͱ࠷దੑ৚݅ KKT ৚݅ ੍໿૝ఆ ತܭը໰୊ʹ͓͚Δ࠷దੑ৚݅ ఆཧ 3.4 ΑΓ࣍ͷܥ͕੒Γཱͭɽ ܥ 3.1

    ू߹ S ⫅ Rn ͷ಺෦͸ۭͰͳ͘ɼؔ਺ f : Rn → R ͸఺ x ∈ int S*3) ʹ͓͍ͯඍ෼Մೳͱ͢Δɽͦͷͱ͖ɼx ͕໰୊ (1) ͷہ ॴత࠷దղͳΒ͹ ∇f(x) = 0 ͕੒ཱ͢Δɽ͞Βʹɼf ͕ತؔ਺ɼS ͕ತू߹ͳΒ͹ɼ∇f(x) = 0 ͸ x ͕໰୊ (1) ͷେҬత࠷దղͰ͋ ΔͨΊͷඞཁे෼৚݅Ͱ͋Δɽ ূ໌ ɹ x ∈ int S Ͱ͋Δͱ͖ɼTs(x) = Rn Ͱ͋Δ͔Βɼ Ns(x) = {0} ͱͳΔɽΑͬͯɼࣜ (6) ͸ ∇f(x) = 0 ʹؼண͞ΕΔɽ *3)ू߹ S ⫅ Rn ͱ఺ x ∈ Rn ʹରͯ͠ɼB(x, r) ⫅ S ͱͳΔΑ͏ͳ r > 0 ͕ଘࡏ͢Δͱ ͖ɼx Λ S ͷ಺఺ͱ͍͍ɼS ͷ಺఺શମͷू߹Λ S ͷ಺෦ͱ͍͍ɼint S Ͱද͢ɽ 12 / 21
  10. ઀ਲ਼ͱ࠷దੑ৚݅ KKT ৚݅ ੍໿૝ఆ ෆ౳ࣜΛؚΉ࠷దԽ໰୊ ࣍ͷ࠷దԽ໰୊Λߟ͑Δɿ minimize x∈Rn f(x) subject

    to gi(x) ≦ 0 (i = 1, . . . , m). (7) ͜͜Ͱɼؔ਺ f ͓Αͼ gi (i = 1, . . . , m) ͸ඍ෼ՄೳͰ͋Δͱ͢Δɽ • ໰୊ (7) ͷ੍໿৚݅͸ɼ໰୊ (1) ͷ࣮ޮՄೳྖҬ S ͕ S = {x ∈ Rn | gi(x) ≦ 0 (i = 1, . . . , m)} (8) ͱද͞ΕΔ৔߹ʹଞͳΒͳ͍ɽ • ໰୊ (7) ͷ࣮ޮՄೳղ x ʹ͓͍ͯɼgi(x) = 0 ͕੒Γ੍ཱͭ໿ ৚݅Λ༗ޮ੍໿৚݅ͱݺͼɼͦͷఴࣈू߹ΛҎԼͰද͢ɿ I(x) = {i ∈ N | gi(x) = 0} ⫅ {1, 2, . . . , m}. 14 / 21
  11. ઀ਲ਼ͱ࠷దੑ৚݅ KKT ৚݅ ੍໿૝ఆ ઢܗԽਲ਼ ࣮ޮՄೳྖҬ S ͕ࣜ (8) Ͱ༩͑ΒΕΔͱ͖ɼ઀ਲ਼ʹมΘΔ֓೦ͱ͠

    ͯઢܗԽਲ਼ͱݺ͹ΕΔਲ਼Λߟ͑Δ͜ͱ͕Ͱ͖Δɽ ఆٛ: ઢܗԽਲ਼ (linearizing cone) ू߹ S ͕ࣜ (8) Ͱ༩͑ΒΕ͍ͯΔͱ͖ɼ఺ x ∈ S ʹ͓͚Δ༗ޮ੍໿ ৚݅ʹରԠ͢Δ੍໿ؔ਺ͷޯ഑ ∇gi(x) (i ∈ I(x)) ͱ 90◦ Ҏ্ͷ֯ Λͳ͢ϕΫτϧશମͷू߹ΛઢܗԽਲ਼ͱݺͼɼCs(x) Ͱද͢ɽ • ઢܗԽਲ਼ Cs(x) ͸࣍ͷΑ͏ʹද͞ΕΔ: Cs(x) := {y ∈ Rn | ⟨∇gi(x), y⟩ ≦ 0 (∀i ∈ I(x))} (9) • ઀ਲ਼ Ts(x) ͸ू߹ S ͔Β௚઀ఆٛ͞ΕΔͷʹର͠ɼઢܗԽਲ਼ Cs(x) ͸ؔ਺ gi ʹґଘͯ͠ఆ·Δ͜ͱʹ஫ҙ͢Δɽ • ઀ਲ਼ͱઢܗԽਲ਼͸ඞͣ͠΋Ұக͢Δͱ͸ݶΒͳ͍͕ɼแؚؔ܎ Ts(x) ⫅ Cs(x) ͸ৗʹ੒ཱ͢Δɽ(ิ୊ 3.3) 15 / 21
  12. ઀ਲ਼ͱ࠷దੑ৚݅ KKT ৚݅ ੍໿૝ఆ Lagrange ؔ਺ Lagrange ؔ਺ͱݺ͹ΕΔؔ਺Λఆٛ͢Δɽ ఆٛ: Lagrange

    ؔ਺ (Lagragian) ໰୊ (7) ʹରͯ͠ɼ࣍ࣜͰఆٛ͞ΕΔؔ਺ L0 : Rn+m → [−∞, ∞] Λ Lagrange ؔ਺ͱ͍͏ɽ L0(x, λ) =      f(x) + m ∑ i=1 λigi(x) (λ ≧ 0) −∞ (λ ≧̸ 0) (10) ͜͜ʹɼλ = (λ1, . . . , λm)⊤ ∈ Rm Λ Lagrange ৐਺ͱݺͿɽ • ࣜ (10) ʹ͓͍ͯɼλ ≧̸ 0 ͷͱ͖ L0(x, λ) = −∞ ͱఆٛͨ͠ ͷ͸ɼ૒ର໰୊Λఆٛ͢Δࡍʹ౎߹͕Α͍ͨΊͰ͋Δɽ • Lagrange ؔ਺ʹΑͬͯ໰୊ (7) ʹର͢Δ࠷దੑͷඞཁ৚݅Λ ༩͑Δ͜ͱ͕Ͱ͖Δɽ 16 / 21
  13. ઀ਲ਼ͱ࠷దੑ৚݅ KKT ৚݅ ੍໿૝ఆ KKT ৚݅: ࠷దੑͷඞཁ৚݅ ໰୊ (7) ʹର͢Δ࠷దੑͷඞཁ৚݅ʹ͍ͭͯड़΂Δɽ

    ఆཧ 3.5 ఺ x Λ໰୊ (7) ͷہॴత࠷దղͱ͢Δɽͦͷͱ͖ɼแؚؔ܎ Cs(x) ⫅ co Ts(x) ͕੒ΓཱͭͳΒ͹ɼ࣍ࣜ: ∇xL0(x, λ) = ∇f(x) + m ∑ i=1 λi∇gi(x) = 0 λi ≧ 0, gi(x) ≧ 0, λigi(x) = 0 (i = 1, . . . , m) (11) Λຬ଍͢Δ Lagrange ৐਺ λ ∈ Rm ͕ଘࡏ͢Δɽ • ࣜ (11) ͸Ұൠʹ KKT ৚݅ (KKT condition) ͱݺ͹ΕΔɽ • ఆཧ 3.5 ͸఺ x ͕໰୊ (7) ͷہॴత࠷దղͰ͋ΔͨΊͷे෼৚ ݅Ͱ͋Δ͜ͱ͸อূ͍ͯ͠ͳ͍ɽ 17 / 21
  14. ઀ਲ਼ͱ࠷దੑ৚݅ KKT ৚݅ ੍໿૝ఆ ࠷దੑͷे෼৚݅ ತܭը໰୊ʹ͓͍ͯ͸ɼKKT ৚͕݅࠷దੑͷे෼৚݅ʹ΋ͳΔɽ ఆཧ 3.6 ໰୊

    (7) ʹ͓͍ͯɼ໨తؔ਺ f ͱ੍໿ؔ਺ gi ͸ඍ෼Մೳͳತؔ਺ͱ ͢Δɽͦͷͱ͖ɼ͋Δ x ∈ Rn ͱ λ ͕ࣜ (11) Λຬ଍͢ΔͳΒ͹ɼx ͸໰୊ (7) ͷେҬత࠷దղͰ͋Δɽ • ఆཧ 3.5 ͱఆཧ 3.6 ΑΓɼತܭը໰୊ͷͱ͖͸ KKT ৚͕݅େ Ҭత࠷దੑͷඞཁे෼৚݅ͱͳΔɽͭ·Γɼ ∃ (x, λ) s.t. ࣜ (11) ⇔ x ͸໰୊ (7) ͷେҬత࠷దղ • େҬత࠷దղͰ͋Δ͜ͱΛอূͰ͖Δͷ͸ɼತܭը໰୊ʹ͓͍ ͯʮہॴత࠷దղͳΒ͹େҬత࠷దղʯ͕੒ΓཱͭͨΊͰ͋ Δɽ(ఆཧ 3.1) • ূ໌͸Ұ౓ܦݧ͓ͯ͘͠ͱΑ͍ɽ(ԋश) 18 / 21
  15. ੍໿૝ఆ ໰୊ (7) ʹର͢Δ୅දతͳ੍໿૝ఆͱͯ͠ҎԼͷ΋ͷ͕͋Δɽ ओͳ੍໿૝ఆ • Ұ࣍ಠ੍ཱ໿૝ఆ: ϕΫτϧ ∇gi(x) (∀i

    ∈ I(x)) ͸Ұ࣍ಠཱͰ ͋Δɽ • Slater ੍໿૝ఆ: ؔ਺ gi (∀i ∈ I(x)) ͸ತؔ਺Ͱ͋Γɼ gi(x) < 0 (i = 1, . . . , m) ͳΔ఺ x0 ͕ଘࡏ͢Δɽ • Cottle ੍໿૝ఆ: ⟨∇g(x), y⟩ < 0 (∀i ∈ I(x)) Λຬͨ͢ϕΫτ ϧ y ∈ Rn ͕ଘࡏ͢Δɽ • Abadie ੍໿૝ఆ: Cs(x) ⫅ Ts(x) • Guignard ੍໿૝ఆ: Cs(x) ⫅ co Ts(x) • Guignard ੍໿૝ఆ͸ఆཧ 3.5 ͰԾఆ੍ͨ͠໿૝ఆͰ͋Δɽ
  16. ੍໿૝ఆͷ૬ޓؔ܎ ੍֤໿૝ఆʹ͍ͭͯ࣍ͷؔ܎͕੒Γཱͭɽ ఆཧ • Ұ࣍ಠ੍ཱ໿૝ఆ ⇒ Cottle ੍໿૝ఆ • Slater

    ੍໿૝ఆ ⇒ Cottle ੍໿૝ఆ • Cottle ੍໿૝ఆ ⇒ Abadie ੍໿૝ఆ • Abadie ੍໿૝ఆ ⇒ Guignard ੍໿૝ఆ • 5 छྨͷ੍໿૝ఆͷ͏ͪ Guignard ੍໿૝ఆ͕࠷΋ऑ͍ԾఆͰ ͋Δ͕ɼ༩͑ΒΕͨ࠷దԽ໰୊ʹରͯ͠ Cs(x) ⫅ co Ts(x) Ͱ ͋Δ͜ͱΛ൑ఆ͢Δ͜ͱ͸ࠔ೉Ͱ͋Γɼ࣮༻తͰ͸ͳ͍ɽ • Ұ੍࣍໿૝ఆɼSlater ੍໿૝ఆɼCottle ੍໿૝ఆ͸ݕূ͕ൺֱ త༰қͰ͋ΔͨΊɼ࣮ࡍʹΑ͘࢖ΘΕΔɽ
  17. ఆཧ 3.1 ࠷దԽ໰୊ (1) ʹ͓͍ͯɼf ͸ತؔ਺ɼS ͸ತू߹ͱ͢Δɽͦͷͱ ͖ɼ໰୊ (1) ͷ೚ҙͷہॴత࠷దղ͸େҬత࠷దղͰ͋Δɽ

    ূ໌ ہॴత࠷దԽͰ͋Δ͕େҬత࠷దղͰͳ͍Α͏ͳ఺ x ∈ S ͷ ଘࡏΛԾఆ͢Δɽ͢ͳΘͪɼf(y) < f(x) Λຬͨ͢Α͏ͳ఺ y ∈ S ͕ଘࡏ͢Δɽ͍·ɼू߹ S ͸ತؔ਺ΑΓ೚ҙͷ α ∈ (0, 1) ʹର͠ ͯɼ(1 − α)x + αy ∈ S Ͱ͋Δɽ·ͨɼؔ਺ f ͸ತؔ਺ΑΓ f((1 − α)x + αy) ≦ (1 − α)f(x) + αf(y) < (1 − α)f(x) + αf(x) = f(x) ͕੒Γཱͭɽ্ࣜͰ α → 0 ͷۃݶΛߟ͑Δͱɼx ͷ೚ҙͷۙ๣ͷத ʹ x ΑΓ΋ਅʹখ͍͞໨తؔ਺஋Λ΋࣮ͭޮՄೳղ͕ଘࡏ͢Δ͜ͱ ͕ݴ͑Δɽ͜Ε͸ɼx ͕ہॴత࠷దղͰ͋Δ͜ͱʹ൓͢Δɽ(ূ ໌ऴ)
  18. ఆཧ 3.4 S ⫅ Rn ͸ۭͰͳ͍ತू߹ɼf : Rn → R

    ͸఺ x ∈ S ʹ͓͍ͯඍ෼ Մೳͳತؔ਺ͱ͢Δɽͦͷͱ͖ɼࣜ (6) ͸ x ͕໰୊ (1) ͷେҬత࠷ దղͰ͋ΔͨΊͷඞཁे෼৚݅Ͱ͋Δɽ ূ໌ ඞཁੑ͸ఆཧ 3.3 ΑΓ໌Β͔ͳͷͰे෼ੑͷΈࣔ͢ɽ͍·ɼ −∇f(x) ∈ Ns(x) ΑΓɼ೚ҙͷ x ∈ S ʹରͯ͠ ⟨−∇f(x), x − x⟩ ≦ 0 ⇔ ⟨∇f(x), x − x⟩ ≧ 0 (12) ͕੒Γཱͭ *4)ɽ·ͨɼ೚ҙͷ x ∈ S ʹରͯ͠ f(x) ≧ (f ͷತੑ) f(x) + ⟨∇f(x), x − x⟩ ≧ (ࣜ (12)) f(x) ͕੒ΓཱͭɽΏ͑ʹɼx ͸໰୊ (1) ͷେҬత࠷దղͰ͋Δɽ(ূ໌ऴ) *4)ू߹ S ͕ತू߹Ͱ͋Δͱ͖๏ઢਲ਼͸ࣜ (5) Ͱ༩͑ΒΕΔ͜ͱΛ༻͍ͨɽ
  19. ఆཧ 3.6 ໰୊ (7) ʹ͓͍ͯɼ໨తؔ਺ f ͱ੍໿ؔ਺ gi ͸ඍ෼Մೳͳತؔ਺ͱ ͢Δɽͦͷͱ͖ɼ͋Δ

    x ∈ Rn ͱ λ ͕ࣜ (11) Λຬ଍͢ΔͳΒ͹ɼx ͸໰୊ (7) ͷେҬత࠷దղͰ͋Δɽ ূ໌ λ Λݻఆͯ͠ɼؔ਺ ℓ : Rn → R Λ࣍ࣜͰఆٛ͢Δɿ ℓ(x) = f(x) + m ∑ i=1 λigi(x). ͍·ɼf, gi ͸ͱ΋ʹತؔ਺Ͱ λ ≧ 0 Ͱ͋Δ͔Β ℓ ΋ತؔ਺Ͱ͋ Δ *5)ɽ৚݅ΑΓɼx ∈ Rn ͱ λ ͸ࣜ (11) Λຬͨ͢ͷͰ ∇f(x) + m ∑ i=1 λi∇gi(x) = 0
  20. ͕੒Γཱͭɽఆཧ 3.4 ΑΓ ℓ ͸ x ʹ͓͍ͯେҬతʹ࠷খͱͳΔɽ Αͬͯɼ೚ҙͷ x ∈

    Rn ʹରͯ͠ɼℓ(x) ≦ ℓ(x), i.e., f(x) + m ∑ i=1 λigi(x) =0 ≦ f(x) + m ∑ i=1 λigi(x) ͕੒Γཱͭɽ৚݅ΑΓ λigi(x) = 0 (i = 1, . . . , m) ͔ͭ λ ≧ 0 Ͱ͋ Δ͔Βɼgi(x) ≦ 0 (i = 1, . . . , m) Λຬͨ͢೚ҙͷ x ʹରͯ͠ *6) f(x) + 0 ≦ f(x) + m ∑ i=1 λigi(x) ≦0 ≦ f(x) ͕੒Γཱͭɽ͕ͨͬͯ͠ɼx ͸େҬత࠷దղͰ͋Δɽ(ূ໌ऴ) *5)ʰඇઢܗ࠷దԽͷجૅʱఆཧ 2.26 Λࢀরɽ *6)͢ͳΘͪɼ໰୊ (7) ͷ೚ҙͷ࣮ޮՄೳղʹରͯ͠