Finite identification and local linear convergence of proximal

22c721aa043f752b3b6e3299df04b306?s=47 GdR MOA 2015
December 03, 2015

Finite identification and local linear convergence of proximal

by J. Fadili

22c721aa043f752b3b6e3299df04b306?s=128

GdR MOA 2015

December 03, 2015
Tweet

Transcript

  1. Finite Identification and Local Linear Convergence of Proximal Splitting Algorithms

    Jalal Fadili Normandie Université-ENSICAEN, GREYC CNRS UMR 6072 Joint work with Jingwei Liang, Gabriel Peyré and Russell Luke Journées du GDR MOA 2015
  2. MOA’15- Class of problems: motivations 2 x y H n

    × 1 L × 1 m × 1 m × n n × L Dictionary Sensing } A " Measurement/degradation x y H n × 1 m × 1 m × n n × L Dictionary Sensing } x y H n × 1 m × 1 m × n n × L Dictionary Sensing } Inverse problem Prior knowledge (regularization, constraints) y 2 Rm x0 2 Rn Forward model
  3. MOA’15- Class of problems: motivations 2 x y H n

    × 1 L × 1 m × 1 m × n n × L Dictionary Sensing } A " Measurement/degradation x y H n × 1 m × 1 m × n n × L Dictionary Sensing } x y H n × 1 m × 1 m × n n × L Dictionary Sensing } Inverse problem Prior knowledge (regularization, constraints) x0 typically lives in a low-dimensional manifold y 2 Rm x0 2 Rn Forward model
  4. MOA’15- Class of problems: motivations 3 x y H n

    × 1 L × 1 m × 1 m × n n × L Dictionary Sensing } A " Measurement/degradation x y H n × 1 m × 1 m × n n × L Dictionary Sensing } x y H n × 1 m × 1 m × n n × L Dictionary Sensing } Inverse problem Forward model Prior knowledge (regularization, constraints) Many applications in data sciences: signal/image processing, machine learning, statistics, etc.. x0 typically lives in a low-dimensional manifold y 2 Rm x0 2 Rn Solve an inverse problem through regularization : min x 2Rn F ( x ) | {z } Data fidelity + G ( x ) | {z } Regularization, constraints G promotes objects living in the same manifold as x0. F and G 2 0 (Rn)
  5. MOA’15- Low-complexity regularization min x 2Rn F ( x )

    + G ( x ) Low-complexity () Low-dimensional manifold F and G 2 0 (Rn)
  6. MOA’15- Low-complexity regularization min x 2Rn F ( x )

    + G ( x ) Low-complexity () Low-dimensional manifold Sparse vectors R2 R3 F and G 2 0 (Rn)
  7. MOA’15- Low-complexity regularization min x 2Rn F ( x )

    + G ( x ) Low-complexity () Low-dimensional manifold Sparse vectors G ( x ) = k x k 1 (tightest convex relaxation of `0) R2 R3 F and G 2 0 (Rn)
  8. MOA’15- Low-complexity regularization min x 2Rn F ( x )

    + G ( x ) Low-complexity () Low-dimensional manifold Sparse vectors G ( x ) = k x k 1 (tightest convex relaxation of `0) Low-rank matrices R2 R3 Sym 2 (R) F and G 2 0 (Rn)
  9. MOA’15- Low-complexity regularization min x 2Rn F ( x )

    + G ( x ) Low-complexity () Low-dimensional manifold Sparse vectors G ( x ) = k x k 1 (tightest convex relaxation of `0) Low-rank matrices G ( x ) = k x k ⇤ (tightest convex relaxation of rank) R2 R3 Sym 2 (R) F and G 2 0 (Rn)
  10. MOA’15- Proximal splitting and local linear convergence 5 45 40

    35 30  25 20 15 10 -8 -6 -4 -2 0  2 4 6 10 12 14 16 18 8 6 4 2 0 8   5 10 15 20 25 30 35    10-14 10-12 10-10 10-8 10-6 10-4 10-2 100 102 F ( x ) + G ( x ) (Inertial) Forward-Backward LASSO min x 2Rn 1 2 k y A x k2 2 + k x k 1
  11. None
  12. None
  13. None
  14. None
  15. None
  16. None
  17. None
  18. None
  19. None
  20. None
  21. None
  22. None
  23. None
  24. None
  25. None
  26. None
  27. None
  28. None
  29. None
  30. None
  31. None
  32. None
  33. None
  34. None
  35. None
  36. None
  37. None
  38. None
  39. None
  40. None
  41. None
  42. None
  43. None
  44. None
  45. None
  46. None
  47. None
  48. None
  49. None
  50. None
  51. None
  52. None
  53. None
  54. None
  55. None
  56. None
  57. None
  58. None
  59. None