Upgrade to Pro — share decks privately, control downloads, hide ads and more …

Finite identification and local linear convergence of proximal

GdR MOA 2015
December 03, 2015

Finite identification and local linear convergence of proximal

by J. Fadili

GdR MOA 2015

December 03, 2015
Tweet

More Decks by GdR MOA 2015

Other Decks in Science

Transcript

  1. Finite Identification and Local Linear Convergence of Proximal Splitting Algorithms

    Jalal Fadili Normandie Université-ENSICAEN, GREYC CNRS UMR 6072 Joint work with Jingwei Liang, Gabriel Peyré and Russell Luke Journées du GDR MOA 2015
  2. MOA’15- Class of problems: motivations 2 x y H n

    × 1 L × 1 m × 1 m × n n × L Dictionary Sensing } A " Measurement/degradation x y H n × 1 m × 1 m × n n × L Dictionary Sensing } x y H n × 1 m × 1 m × n n × L Dictionary Sensing } Inverse problem Prior knowledge (regularization, constraints) y 2 Rm x0 2 Rn Forward model
  3. MOA’15- Class of problems: motivations 2 x y H n

    × 1 L × 1 m × 1 m × n n × L Dictionary Sensing } A " Measurement/degradation x y H n × 1 m × 1 m × n n × L Dictionary Sensing } x y H n × 1 m × 1 m × n n × L Dictionary Sensing } Inverse problem Prior knowledge (regularization, constraints) x0 typically lives in a low-dimensional manifold y 2 Rm x0 2 Rn Forward model
  4. MOA’15- Class of problems: motivations 3 x y H n

    × 1 L × 1 m × 1 m × n n × L Dictionary Sensing } A " Measurement/degradation x y H n × 1 m × 1 m × n n × L Dictionary Sensing } x y H n × 1 m × 1 m × n n × L Dictionary Sensing } Inverse problem Forward model Prior knowledge (regularization, constraints) Many applications in data sciences: signal/image processing, machine learning, statistics, etc.. x0 typically lives in a low-dimensional manifold y 2 Rm x0 2 Rn Solve an inverse problem through regularization : min x 2Rn F ( x ) | {z } Data fidelity + G ( x ) | {z } Regularization, constraints G promotes objects living in the same manifold as x0. F and G 2 0 (Rn)
  5. MOA’15- Low-complexity regularization min x 2Rn F ( x )

    + G ( x ) Low-complexity () Low-dimensional manifold F and G 2 0 (Rn)
  6. MOA’15- Low-complexity regularization min x 2Rn F ( x )

    + G ( x ) Low-complexity () Low-dimensional manifold Sparse vectors R2 R3 F and G 2 0 (Rn)
  7. MOA’15- Low-complexity regularization min x 2Rn F ( x )

    + G ( x ) Low-complexity () Low-dimensional manifold Sparse vectors G ( x ) = k x k 1 (tightest convex relaxation of `0) R2 R3 F and G 2 0 (Rn)
  8. MOA’15- Low-complexity regularization min x 2Rn F ( x )

    + G ( x ) Low-complexity () Low-dimensional manifold Sparse vectors G ( x ) = k x k 1 (tightest convex relaxation of `0) Low-rank matrices R2 R3 Sym 2 (R) F and G 2 0 (Rn)
  9. MOA’15- Low-complexity regularization min x 2Rn F ( x )

    + G ( x ) Low-complexity () Low-dimensional manifold Sparse vectors G ( x ) = k x k 1 (tightest convex relaxation of `0) Low-rank matrices G ( x ) = k x k ⇤ (tightest convex relaxation of rank) R2 R3 Sym 2 (R) F and G 2 0 (Rn)
  10. MOA’15- Proximal splitting and local linear convergence 5 45 40

    35 30  25 20 15 10 -8 -6 -4 -2 0  2 4 6 10 12 14 16 18 8 6 4 2 0 8   5 10 15 20 25 30 35    10-14 10-12 10-10 10-8 10-6 10-4 10-2 100 102 F ( x ) + G ( x ) (Inertial) Forward-Backward LASSO min x 2Rn 1 2 k y A x k2 2 + k x k 1