Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
RNNとLSTM
Search
Convergence Lab.
August 26, 2018
Technology
0
280
RNNとLSTM
コンラボ勉強会資料
RNNとLSTMの簡単な説明
Convergence Lab.
August 26, 2018
Tweet
Share
More Decks by Convergence Lab.
See All by Convergence Lab.
RAGで制御可能なFull-duplex音声対話システム
mssmkmr
0
72
工学系の関数解析輪読会 - 第1章 線型空間
mssmkmr
0
130
NeurIPS2018読み会@PFN Dialog-to-Action: Conversational Question Answering Over a Large-Scale Knowledge Base
mssmkmr
0
2.1k
考える技術・書く技術まとめ
mssmkmr
0
710
Global-Locally Self-Attentive Dialogue State Tracker
mssmkmr
1
250
Other Decks in Technology
See All in Technology
ルネサンス開発者を育てる 1on1支援AIエージェント
yusukeshimizu
0
130
フィッシュボウルのやり方 / How to do a fishbowl
pauli
2
430
日本Rubyの会: これまでとこれから
snoozer05
PRO
6
250
AWSインフルエンサーへの道 / load of AWS Influencer
whisaiyo
0
240
Claude Skillsの テスト業務での活用事例
moritamasami
1
130
モダンデータスタックの理想と現実の間で~1.3億人Vポイントデータ基盤の現在地とこれから~
taromatsui_cccmkhd
2
290
Oracle Cloud Infrastructure:2025年12月度サービス・アップデート
oracle4engineer
PRO
0
150
20251222_サンフランシスコサバイバル術
ponponmikankan
2
160
テストセンター受験、オンライン受験、どっちなんだい?
yama3133
0
200
Everything As Code
yosuke_ai
0
460
M&Aで拡大し続けるGENDAのデータ活用を促すためのDatabricks権限管理 / AEON TECH HUB #22
genda
0
310
AWS Lambda durable functions を使って AWS Lambda の15分の壁を超えてみよう
matsuzawatakeshi
0
120
Featured
See All Featured
DevOps and Value Stream Thinking: Enabling flow, efficiency and business value
helenjbeal
1
75
Navigating Weather and Climate Data
rabernat
0
60
Rebuilding a faster, lazier Slack
samanthasiow
85
9.3k
Prompt Engineering for Job Search
mfonobong
0
130
So, you think you're a good person
axbom
PRO
0
1.9k
Lessons Learnt from Crawling 1000+ Websites
charlesmeaden
PRO
0
980
Agile that works and the tools we love
rasmusluckow
331
21k
Building Adaptive Systems
keathley
44
2.9k
AI: The stuff that nobody shows you
jnunemaker
PRO
1
40
4 Signs Your Business is Dying
shpigford
187
22k
How to optimise 3,500 product descriptions for ecommerce in one day using ChatGPT
katarinadahlin
PRO
0
3.4k
Scaling GitHub
holman
464
140k
Transcript
コンラボ勉強会 RNNとLSTM Convergence Lab. 木村優志
はじめに RNNとLSTMの基礎的な概念を勉強しま しょう。 フィードフォワードニューラルネットワーク やバックプロパゲーションの予備知識が 必要です。 2
時系列信号 時系列信号とは時間の流れに従って値が 変わる信号です。音声などがこれに当た ります。ニューラルネットワークで時系列 信号を扱うにはいくつかの方法がありま す。 まずはじめにフィードフォワード型の ニューラルネットワークで時系列信号を扱 う方法について見ていきましょう。 3
フィードフォワード型ニューラルネットワークと時系列 通常のフィードフォワード型ニューラルネッ トワークで時系列信号を扱う方法を考えま す。単純には、複数の時刻の信号を入力 すればよいはずです。 このような方法をタイムスプライスと言い ました。音声認識などで前に使われた方 法です。 4
フィードフォワード型ニューラルネットワークと時系列 5 通常のフィードフォワード型 ニューラルネットワーク タイムスプライスした フィードフォワード型 ニューラルネットワーク
タイムスプライス型の欠点 タイムスプライス型には2つの弱点があり ます。 ◦ 長期の時系列を扱おうとするとパラ メータが増える ◦ 固定時間長しか扱えない 6
リカレントニューラルネットワーク(RNN) そこで、考え出されたのが再帰的な構造 を持つリカレントニューラルネットワーク (RNN)です。 リカレントニューラルネットワークは、一つ 前の時刻の中間層の出力を、もう一度中 間層に入力するような構造を持っていま す。 7
リカレントニューラルネットワーク(RNN) 8
単純なRNNの欠点 中間層を再帰するだけの単純なRNNは、 長期的な依存構造を扱えないと言われて います。 長期的な構造を扱うための方法として LSTMがあります。 9
LSTM (Long Short Term Memory) LSTMは長期・短期記憶という意味です。 そのために、GateとCellという記憶素子を 組み合わせます。 10
LSTM 11 これがLSTMの素子です。 σはシグモイド関数になります。 詳しく見ていきましょう。
Gate 右図のシグモイドと掛け算を合わせ た部分がGateになります。 Gateはそのまま門のイメージです。 掛け算のユニットに入る信号を通し たり妨げたりします。 シグモイド関数の値が1のとき門が 開いて、信号がそのまま通ります。 逆に、0のときは門が閉じられ、信号が伝 わりません。
12
Cell Cell: Cellは過去の情報を覚えている素子です。 13
Inpute Gate Input GateはCellに入力 x を入れるかどうかを決 めます。 14
Output Gate Output GateはCellの値を出力するかどうかを決 めます。 15
Forget Gate Forget GateはCellの値を忘れる(0にリセットす る)かどうかをきめます。 16
まとめ RNNとLSTMについて簡単に説明しまし た。 LSTMではGateとCellの関係をよくおさえ ておきましょう。 17