Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Data-driven Innovation
Search
Matt Wood
October 10, 2012
Technology
1
370
Data-driven Innovation
Slides from my session at the #AWS Public Sector Summit, 2012.
Matt Wood
October 10, 2012
Tweet
Share
More Decks by Matt Wood
See All by Matt Wood
Field Notes from Expeditions in the Cloud
mza
2
320
A Platform for Big Data
mza
6
690
The Data Lifecycle
mza
5
450
Provision Throughput Like a Boss
mza
0
390
Impact of Cloud Computing: Life Sciences
mza
2
800
Latency's Worst Nightmare: Performance Tuning Tips and Tricks
mza
4
1k
Under the Covers of DynamoDB
mza
4
930
From Analytics to Intelligence: Amazon Redshift
mza
9
930
Scaling Science
mza
3
440
Other Decks in Technology
See All in Technology
Intuneお役立ちツールのご紹介
sukank
3
750
RAGのためのビジネス文書解析技術
eida
3
660
全社横断データ活用推進のコツと その負債とのつき合い方
masatoshi0205
0
170
フロントエンド メタフレームワーク 選定の際に考えたこと
yuppeeng
0
590
スクラムチームを立ち上げる〜チーム開発で得られたもの・得られなかったもの〜
ohnoeight
2
290
3次元点群データ「VIRTUAL SHIZUOKA』のオープンデータ化による恩恵と協働の未来/FOSS4G Japan 2024
kazz24s
0
130
Windows Autopilot Deployment by OSD Guy
tamaiyutaro
0
310
Microsoft MVPになる前、なってから/Fukuoka_Tech_Women_Community_1_baba
nina01
0
170
Redmine 6.0 新機能評価ガイド
vividtone
0
260
株式会社ログラス − エンジニア向け会社説明資料 / Loglass Comapany Deck for Engineer
loglass2019
3
28k
dev 補講: プロダクトセキュリティ / Product security overview
wa6sn
0
1.6k
QAEチームが辿った3年 ボクらが改善業務にスクラムを選んだワケ / 20241108_cloudsign_ques23
bengo4com
0
590
Featured
See All Featured
Why Our Code Smells
bkeepers
PRO
334
57k
Art, The Web, and Tiny UX
lynnandtonic
297
20k
Bash Introduction
62gerente
608
210k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
92
16k
RailsConf 2023
tenderlove
29
890
A Tale of Four Properties
chriscoyier
156
23k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
226
22k
Code Review Best Practice
trishagee
64
17k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
7
560
Intergalactic Javascript Robots from Outer Space
tanoku
268
27k
What's new in Ruby 2.0
geeforr
343
31k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
4
360
Transcript
Data-driven innovation
[email protected]
Dr. Matt Wood @mza
Hello
Hello
Data
DNA
Chromosome 11 : ACTN3 : rs1815739
Chromosome X : rs6625163
Chromosome 19 : FUT2 : rs601338
Chromosome 2 : rs10427255
TYPE II Chromosome 10 : rs7903146
+0.25 Chromosome 15 : rs2472297
I know this, because...
None
A T C G G T C C A G
G
A T C G G T C C A G
G A G C C A G G U C C Transcription
A T C G G T C C A G
G A G C C A G G U C C Translation Ser Glu Val Transcription
None
None
Chromosome 11 : ACTN3 : rs1815739
Chromosome X : rs6625163
Chromosome 19 : FUT2 : rs601338
Chromosome 2 : rs10427255
TYPE II Chromosome 10 : rs7903146
+0.25 Chromosome 15 : rs2472297
I know all that, because...
Human Genome Project
40 species ensembl.org
Compare
Change
Less
None
None
Compare
Transformative
None
Data generation costs are falling everywhere
Customer segmentation, financial modeling, system analysis, line of sight, business
intelligence.
Opportunity
Transformation
Innovation
Generation Collection & storage Analytics & computation Collaboration & sharing
Generation Collection & storage Analytics & computation Collaboration & sharing
lower cost, increased throughput
Generation Collection & storage Analytics & computation Collaboration & sharing
lower cost, increased throughput highly constrained
Barrier
Data generation challenge X
Analytics challenge
Accessibility challenge
Enter the AWS Cloud
Utility
Remove constraints
Data-driven innovation
Distributed
2
2 Software for distributed storage & analysis
2 Software for distributed storage & analysis Infrastructure for distributed
storage & analysis
Software Frameworks for data-intensive work loads. Distributed by design.
Infrastructure Platform for data-intensive work loads. Distributed by design.
Support the data timeline
Generation Collection & storage Analytics & computation Collaboration & sharing
highly constrained
Generation Collection & storage Analytics & computation Collaboration & sharing
Lower the barrier to entry
Agility
Responsive
Generation Collection & storage Analytics & computation Collaboration & sharing
Generation DynamoDB Analytics & computation Collaboration & sharing
Generation DynamoDB EC2, Elastic MapReduce Collaboration & sharing
Generation DynamoDB EC2, Elastic MapReduce S3, Public Datasets
Tools and techniques for working productively with data
Scale
Secure
2 Software for distributed storage & analysis Infrastructure for distributed
storage & analysis
Amazon EC2
Scale out systems Embarrassingly parallel Queue based distribution Small, medium
and high scale
High performance
High performance Compute performance
Cluster Compute Intel Xeon E5-2670 10 gigabit, non-blocking network 60.5
Gb Placement groupings
Cluster Compute Intel Xeon E5-2670 10 gigabit, non-blocking network 60.5
Gb Placement groupings +GPU
240 TFLOPS
High performance Compute performance IO performance
Unstructured
Variable
Amazon DynamoDB Predictable, consistent performance Unlimited storage Single digit millisecond
latencies No schema. Zero admin.
...and SSDs for all
hi1.4xlarge 2 x 1Tb SSD storage 10 gigabit networking HVM:
90k IOPS read, 9k to 75k write PV: 120k IOPS read, 10k to 85k write
Netflix “The hi1.4xlarge configuration is about half the system cost
for the same throughput.” http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html
Provisioned IOPS Provision required IO performance EBS optimized instances
Cost optimization
Reserved capacity
Reserved capacity On-demand
Reserved capacity On-demand
Spot instances
None
$0.2530 vs $2.40
2 Software for distributed storage & analysis Infrastructure for distributed
storage & analysis
map/reduce
Map. Reduce.
Write functions. Scale up.
Hadoop
Undi erentiated heavy lifting
Amazon Elastic MapReduce Managed Hadoop Clusters Easy to provision and
monitor Write two functions. Scale up. Choice of Hadoop flavors
Amazon Elastic MapReduce Integrates with S3 Analytics for DynamoDB Perfect
for Spot pricing
Input data S3
Elastic MapReduce Code Input data S3
Elastic MapReduce Code Name node Input data S3
Elastic MapReduce Code Name node Input data S3 Elastic cluster
Elastic MapReduce Code Name node Input data S3 Elastic cluster
HDFS
Elastic MapReduce Code Name node Input data S3 Elastic cluster
HDFS Queries + BI Via JDBC, Pig, Hive
Elastic MapReduce Code Name node Output S3 + SimpleDB Input
data S3 Elastic cluster HDFS Queries + BI Via JDBC, Pig, Hive
Output S3 + SimpleDB Input data S3
CDC Centers for Disease Control and Prevention
“BioSense 2.0 protects the health of the American people by
providing timely insight into the health of communities, regions, and the nation by o ering a variety of features to improve data collection, standardization, storage, analysis, and collaboration”
Health data Collection & storage Analytics & computation Collaboration &
sharing
Health data Collection & storage Analytics & computation Collaboration &
sharing highly constrained
HIPAA, HITECH, FISMA Moderate
GovCloud
Beyond a definition of Big Data
Chromosome 11 : ACTN3 : rs1815739
Chromosome X : rs6625163
Chromosome 19 : FUT2 : rs601338
Chromosome 2 : rs10427255
TYPE II Chromosome 10 : rs7903146
+0.25 Chromosome 15 : rs2472297
Thank you aws.amazon.com @mza
[email protected]