Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Data-driven Innovation
Search
Matt Wood
October 10, 2012
Technology
1
390
Data-driven Innovation
Slides from my session at the #AWS Public Sector Summit, 2012.
Matt Wood
October 10, 2012
Tweet
Share
More Decks by Matt Wood
See All by Matt Wood
Field Notes from Expeditions in the Cloud
mza
2
380
A Platform for Big Data
mza
6
730
The Data Lifecycle
mza
5
490
Provision Throughput Like a Boss
mza
0
420
Impact of Cloud Computing: Life Sciences
mza
2
830
Latency's Worst Nightmare: Performance Tuning Tips and Tricks
mza
4
1.1k
Under the Covers of DynamoDB
mza
4
1k
From Analytics to Intelligence: Amazon Redshift
mza
9
970
Scaling Science
mza
3
480
Other Decks in Technology
See All in Technology
Re:VIEWで書いた「Compose で Android の edge-to-edge に対応する」をRoo Codeで発表資料にしてもらった
tomoya0x00
0
250
LINEギフトのLINEミニアプリアクセシビリティ改善事例
lycorptech_jp
PRO
0
340
7,000名規模の 人材サービス企業における プロダクト戦略・戦術と課題 / Product strategy, tactics and challenges for a 7,000-employee staffing company
techtekt
0
230
テキスト解析で見る PyCon APAC 2025 セッション&スピーカートレンド分析
negi111111
0
260
PostgreSQL Unconference #52 pg_tde
nori_shinoda
1
250
Lightdashの利活用状況 ー導入から2年経った現在地_20250409
hirokiigeta
2
240
Spice up your notifications/try!Swift25
noppefoxwolf
2
150
自分の軸足を見つけろ
tsuemura
1
190
OCI Database with PostgreSQLのご紹介
rkajiyama
0
130
ゆるくVPC Latticeについてまとめてみたら、意外と奥深い件
masakiokuda
2
210
改めて学ぶ Trait の使い方 / phpcon odawara 2025
meihei3
1
230
SSH公開鍵認証による接続 / Connecting with SSH Public Key Authentication
kaityo256
PRO
2
280
Featured
See All Featured
Product Roadmaps are Hard
iamctodd
PRO
52
11k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
656
60k
Designing for Performance
lara
607
69k
The Cult of Friendly URLs
andyhume
78
6.3k
How to Ace a Technical Interview
jacobian
276
23k
A designer walks into a library…
pauljervisheath
205
24k
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.2k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
33
2.2k
jQuery: Nuts, Bolts and Bling
dougneiner
63
7.7k
Code Review Best Practice
trishagee
67
18k
Docker and Python
trallard
44
3.3k
Fontdeck: Realign not Redesign
paulrobertlloyd
83
5.5k
Transcript
Data-driven innovation matthew@amazon.com Dr. Matt Wood @mza
Hello
Hello
Data
DNA
Chromosome 11 : ACTN3 : rs1815739
Chromosome X : rs6625163
Chromosome 19 : FUT2 : rs601338
Chromosome 2 : rs10427255
TYPE II Chromosome 10 : rs7903146
+0.25 Chromosome 15 : rs2472297
I know this, because...
None
A T C G G T C C A G
G
A T C G G T C C A G
G A G C C A G G U C C Transcription
A T C G G T C C A G
G A G C C A G G U C C Translation Ser Glu Val Transcription
None
None
Chromosome 11 : ACTN3 : rs1815739
Chromosome X : rs6625163
Chromosome 19 : FUT2 : rs601338
Chromosome 2 : rs10427255
TYPE II Chromosome 10 : rs7903146
+0.25 Chromosome 15 : rs2472297
I know all that, because...
Human Genome Project
40 species ensembl.org
Compare
Change
Less
None
None
Compare
Transformative
None
Data generation costs are falling everywhere
Customer segmentation, financial modeling, system analysis, line of sight, business
intelligence.
Opportunity
Transformation
Innovation
Generation Collection & storage Analytics & computation Collaboration & sharing
Generation Collection & storage Analytics & computation Collaboration & sharing
lower cost, increased throughput
Generation Collection & storage Analytics & computation Collaboration & sharing
lower cost, increased throughput highly constrained
Barrier
Data generation challenge X
Analytics challenge
Accessibility challenge
Enter the AWS Cloud
Utility
Remove constraints
Data-driven innovation
Distributed
2
2 Software for distributed storage & analysis
2 Software for distributed storage & analysis Infrastructure for distributed
storage & analysis
Software Frameworks for data-intensive work loads. Distributed by design.
Infrastructure Platform for data-intensive work loads. Distributed by design.
Support the data timeline
Generation Collection & storage Analytics & computation Collaboration & sharing
highly constrained
Generation Collection & storage Analytics & computation Collaboration & sharing
Lower the barrier to entry
Agility
Responsive
Generation Collection & storage Analytics & computation Collaboration & sharing
Generation DynamoDB Analytics & computation Collaboration & sharing
Generation DynamoDB EC2, Elastic MapReduce Collaboration & sharing
Generation DynamoDB EC2, Elastic MapReduce S3, Public Datasets
Tools and techniques for working productively with data
Scale
Secure
2 Software for distributed storage & analysis Infrastructure for distributed
storage & analysis
Amazon EC2
Scale out systems Embarrassingly parallel Queue based distribution Small, medium
and high scale
High performance
High performance Compute performance
Cluster Compute Intel Xeon E5-2670 10 gigabit, non-blocking network 60.5
Gb Placement groupings
Cluster Compute Intel Xeon E5-2670 10 gigabit, non-blocking network 60.5
Gb Placement groupings +GPU
240 TFLOPS
High performance Compute performance IO performance
Unstructured
Variable
Amazon DynamoDB Predictable, consistent performance Unlimited storage Single digit millisecond
latencies No schema. Zero admin.
...and SSDs for all
hi1.4xlarge 2 x 1Tb SSD storage 10 gigabit networking HVM:
90k IOPS read, 9k to 75k write PV: 120k IOPS read, 10k to 85k write
Netflix “The hi1.4xlarge configuration is about half the system cost
for the same throughput.” http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html
Provisioned IOPS Provision required IO performance EBS optimized instances
Cost optimization
Reserved capacity
Reserved capacity On-demand
Reserved capacity On-demand
Spot instances
None
$0.2530 vs $2.40
2 Software for distributed storage & analysis Infrastructure for distributed
storage & analysis
map/reduce
Map. Reduce.
Write functions. Scale up.
Hadoop
Undi erentiated heavy lifting
Amazon Elastic MapReduce Managed Hadoop Clusters Easy to provision and
monitor Write two functions. Scale up. Choice of Hadoop flavors
Amazon Elastic MapReduce Integrates with S3 Analytics for DynamoDB Perfect
for Spot pricing
Input data S3
Elastic MapReduce Code Input data S3
Elastic MapReduce Code Name node Input data S3
Elastic MapReduce Code Name node Input data S3 Elastic cluster
Elastic MapReduce Code Name node Input data S3 Elastic cluster
HDFS
Elastic MapReduce Code Name node Input data S3 Elastic cluster
HDFS Queries + BI Via JDBC, Pig, Hive
Elastic MapReduce Code Name node Output S3 + SimpleDB Input
data S3 Elastic cluster HDFS Queries + BI Via JDBC, Pig, Hive
Output S3 + SimpleDB Input data S3
CDC Centers for Disease Control and Prevention
“BioSense 2.0 protects the health of the American people by
providing timely insight into the health of communities, regions, and the nation by o ering a variety of features to improve data collection, standardization, storage, analysis, and collaboration”
Health data Collection & storage Analytics & computation Collaboration &
sharing
Health data Collection & storage Analytics & computation Collaboration &
sharing highly constrained
HIPAA, HITECH, FISMA Moderate
GovCloud
Beyond a definition of Big Data
Chromosome 11 : ACTN3 : rs1815739
Chromosome X : rs6625163
Chromosome 19 : FUT2 : rs601338
Chromosome 2 : rs10427255
TYPE II Chromosome 10 : rs7903146
+0.25 Chromosome 15 : rs2472297
Thank you aws.amazon.com @mza matthew@amazon.com