Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
交通の最適化で強化学習を使い始めた話
Search
NearMeの技術発表資料です
PRO
September 02, 2023
Technology
1
990
交通の最適化で強化学習を使い始めた話
NearMeの技術発表資料です
PRO
September 02, 2023
Tweet
Share
More Decks by NearMeの技術発表資料です
See All by NearMeの技術発表資料です
並列で⽣成AIにコーディングをやらせる
nearme_tech
PRO
1
32
希望休勤務を考慮したシフト作成
nearme_tech
PRO
0
21
Hub Labeling による高速経路探索
nearme_tech
PRO
0
62
Build an AI agent with Mastra
nearme_tech
PRO
0
68
Rustで強化学習アルゴリズムを実装する vol3
nearme_tech
PRO
0
35
Webアプリケーションにおけるクラスの設計再入門
nearme_tech
PRO
1
78
AIエージェント for 予約フォーム
nearme_tech
PRO
2
140
ULID生成速度を40倍にしたった
nearme_tech
PRO
2
52
Amazon AuroraとMongoDBの アーキテクチャを比較してみたら 結構違った件について
nearme_tech
PRO
0
25
Other Decks in Technology
See All in Technology
生成AI時代の開発組織・技術・プロセス 〜 ログラスの挑戦と考察 〜
itohiro73
1
390
250627 関西Ruby会議08 前夜祭 RejectKaigi「DJ on Ruby Ver.0.1」
msykd
PRO
2
430
Backlog ユーザー棚卸しRTA、多分これが一番早いと思います
__allllllllez__
1
110
より良いプロダクトの開発を目指して - 情報を中心としたプロダクト開発 #phpcon #phpcon2025
bengo4com
1
3.2k
rubygem開発で鍛える設計力
joker1007
3
350
Tech-Verse 2025 Global CTO Session
lycorptech_jp
PRO
0
1.4k
Tokyo_reInforce_2025_recap_iam_access_analyzer
hiashisan
0
160
Tech-Verse 2025 Keynote
lycorptech_jp
PRO
0
1.5k
ハッカソン by 生成AIハッカソンvol.05
1ftseabass
PRO
0
160
Core Audio tapを使ったリアルタイム音声処理のお話
yuta0306
0
160
Should Our Project Join the CNCF? (Japanese Recap)
whywaita
PRO
0
310
生成AI開発案件におけるClineの業務活用事例とTips
shinya337
0
200
Featured
See All Featured
Keith and Marios Guide to Fast Websites
keithpitt
411
22k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
357
30k
Into the Great Unknown - MozCon
thekraken
39
1.9k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
233
17k
It's Worth the Effort
3n
185
28k
Why Our Code Smells
bkeepers
PRO
337
57k
Build your cross-platform service in a week with App Engine
jlugia
231
18k
Done Done
chrislema
184
16k
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.4k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
48
5.4k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
26
2.9k
Stop Working from a Prison Cell
hatefulcrawdad
270
20k
Transcript
0 交通の最適化で強化学習を使い始めた話 2023-09-02 AWS Startup Day 2023 Kenji Hosoda
1
2 自己紹介 名前:細田 謙二 東京大学大学院工学博士(脳の視覚情報処理)。 前職では、EコマースパッケージやPOSアプリ、IoTや機械学習 を含む新規事業など様々なサービスを開発。Python入門2&3 著。 現在、CTOとしてNearMeに参画。
3 ドアツードアの移動に関する課題は多い 空港や観光地への アクセス 混雑を回避した 通勤などの移動 交通空白地帯や 高齢者の移動 終電後や災害時の 代替輸送手段不足
4 4 タクシーの「シェア」で 第4の公共交通機関を目指す!
5 NearMe
6 バスよりも便利、タクシーよりも安い NearMe
7 注文までの流れ
8 □□□□□□ □□□□□□ □□□□□□ □□□□□□ □□□□□□ 管理画面 注文が入るたびに AIにより組み合わせの最適化をおこない、 自動でマッチング
相乗りになった注文
9 OR-Tools: https://developers.google.com/optimization 車両と注文をマッチする 配送計画問題(VRP)を ヒューリスティックな手法により解く マッチングのアルゴリズム ただし、注文が入る度に、 また、承認、キャンセル等の注文ステータスが変化する度に 逐次的に最適化処理を行っている
10 リリース後の実績
11 サービス展開 エアポートシャトル トラベルシャトル 地域シャトル ゴルフシャトル
12 さらなる改善の余地 羽田空港に行く運行と 帰る運行が対になると効率がいい 車両 相乗りマッチング後の運行 手作業で 車両にアサイン
13 簡易的な連続運行レコメンド 連続運行できるものを ハイライト
14 機械学習による追加相乗りの確率推定によるレコメンド 偶奇の日付で機能ON/OFFして 総受注数に有意に差 (ペアt検定) 追加相乗りの確率が高い ものをハイライト 在庫に限りがある場合は 効率のいい運行を 選ぶ必要がある
15 将棋のようでもありテトリスのようでもある 最善手を予測 運行はブロック 運行は駒
16 複雑そうなので強化学習のアプローチを探る OR-Tools: https://developers.google.com/optimization 車両と注文をマッチする 配送計画問題(VRP)には変わらない まずはプリミティブなモデルで調査
17 近年、深層強化学習x VRPによるアプローチが注目されている B Li et al., 2022
18 性能は出るのか? Solve routing problems with a residual edge-graph attention
neural network. K Lei, et al., Neurocomputing 2022 報酬 ベンチマークしたモデル パフォーマンス
19 EncoderのGraph Neural Networkについて https://distill.pub/2021/gnn-intro/ グラフのエッジに沿って 特徴量を集約 メッセージ伝搬関数
20 DecoderのAttentionとMaskについて K Lei, et al., 2022 ステップ1 ステップ2 ステップm
辿った点の 入力をマスク
21 実際に試してみた TSP, n_nodes=50 TSP, n_nodes=20 ちゃんと学習してるのすごい!ここ をスタートラインにして 新たなモデルを探っていく ※論文より小規模な学習
だったので、トータルは OR-Toolsと五分五分くらい
22 https://ekimetrics.github.io/blog/2021/11/03/tsp/ Z Zhang et al., 2023 例1:渋滞のエリアが設定されるシナリオ 例2 強化学習の動的なシナリオへの対応力
顧客(点)と渋滞(点の距離)が時間と共に変化するシナリオ
23 モデルのカスタマイズ ベンチマークしたモデル https://distill.pub/2021/gnn-intro/ K Lei, et al., 2022 グラフ要素の特徴量を変更
アテンションモデルの マスクの仕方を変更 報酬設計を変更
24 少しだけリアルなシナリオへの対応 Start 報酬を、到達した点の数 - α*距離、 つまり、売上 - コスト、に変更 End
Start End Start End 全ての点を必ずしも通らなくていいように マスクを変更 (Start / Endの点も設定) 割に合わない運行が無視される ※最短経路の学習が進まないと、 売上 - コストが正しく算出されないので、 報酬を学習ステップに応じて変えた こっちに来た方が より多く点を辿れる
25 AWS SageMaker使ってみた n=20 1epoch M2 Mac CPU:52.6 秒 ml.g4dn.2xlarge
GPU:15.4 秒 n=50 1epoch M2 Mac CPU : 336.2 秒 ml.g4dn.2xlarge GPU:60.0 秒 hidden_node_dim=[128], hidden_edge_dim=[16], conv_laysers=[4], data_size=[12800] 学習パラメタ M2 Macより4~5倍速い
26 まとめ • 逐次的な組み合わせ最適化をコアに相乗りサービスを構築した • 相乗り後の運行をどの車両にアサインすればいいかという問題が浮上 • 将棋やテトリスのような複雑さがあり強化学習のアプローチを探った • 深層強化学習
x 配送計画問題(VRP)において、 従来のヒューリスティックな手法に匹敵 / 超える結果が得られることが分かった • モデルの一部を変えることで、より複雑なシナリオに対応できた • 学習は非常に時間がかかるので、GPU必須。AWS SageMakerで手軽に利用できた
27 Thank you