Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
最適化への入り口
Search
NearMeの技術発表資料です
PRO
June 24, 2022
Technology
0
130
最適化への入り口
NearMeの技術発表資料です
PRO
June 24, 2022
Tweet
Share
More Decks by NearMeの技術発表資料です
See All by NearMeの技術発表資料です
ルートの質を評価する指標について
nearme_tech
PRO
0
13
Rustで作る強化学習エージェント
nearme_tech
PRO
0
43
ビームサーチ
nearme_tech
PRO
0
36
WASM入門
nearme_tech
PRO
0
36
ESLintをもっと有効活用しよう
nearme_tech
PRO
0
25
リファクタリングのための第一歩
nearme_tech
PRO
0
68
ガウス過程回帰とベイズ最適化
nearme_tech
PRO
1
200
確率的プログラミング入門
nearme_tech
PRO
2
120
Observability and OpenTelemetry
nearme_tech
PRO
2
46
Other Decks in Technology
See All in Technology
Ruby on Railsで持続可能な開発を行うために取り組んでいること
am1157154
3
170
エンジニアの健康管理術 / Engineer Health Management Techniques
y_sone
4
1.3k
Exadata Database Service on Cloud@Customer セキュリティ、ネットワーク、および管理について
oracle4engineer
PRO
2
1.6k
AWSアカウントのセキュリティ自動化、どこまで進める? 最適な設計と実践ポイント
yuobayashi
7
1.8k
マルチアカウント環境における組織ポリシーについて まとめてみる
nrinetcom
PRO
2
110
【Snowflake九州ユーザー会#2】BigQueryとSnowflakeを比較してそれぞれの良し悪しを掴む / BigQuery vs Snowflake: Pros & Cons
civitaspo
3
1.1k
AIエージェント元年@日本生成AIユーザ会
shukob
1
260
QAエンジニアが スクラムマスターをすると いいなぁと思った話
____rina____
0
160
Cracking the Coding Interview 6th Edition
gdplabs
14
28k
AI自体のOps 〜LLMアプリの運用、AWSサービスとOSSの使い分け〜
minorun365
PRO
9
1.1k
"TEAM"を導入したら最高のエンジニア"Team"を実現できた / Deploying "TEAM" and Building the Best Engineering "Team"
yuj1osm
1
240
[OpsJAWS Meetup33 AIOps] Amazon Bedrockガードレールで守る安全なAI運用
akiratameto
1
140
Featured
See All Featured
Rails Girls Zürich Keynote
gr2m
94
13k
Building Adaptive Systems
keathley
40
2.4k
The Cult of Friendly URLs
andyhume
78
6.2k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
30
2.3k
The World Runs on Bad Software
bkeepers
PRO
67
11k
Building Your Own Lightsaber
phodgson
104
6.2k
Bootstrapping a Software Product
garrettdimon
PRO
307
110k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
666
120k
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
160
15k
Building Flexible Design Systems
yeseniaperezcruz
328
38k
Keith and Marios Guide to Fast Websites
keithpitt
411
22k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
11
1.3k
Transcript
0 最適化への入口 2022-06-24 第3回NearMe技術勉強会 Yuta Okamoto
1 目次 1. 最適化問題とは? 2. 組合せ最適化問題とは? 3. 組合せ最適化問題を解くのは難しい 4. 巡回セールスマン問題とは?
2 • 以下のように表されるもの. 1.最適化問題とは? 目的関数 制約条件 与えられた制約条件の下である目的関数を最小にする解を求める
3 • 最適化問題のうち,組み合わせ的な構造を持つもの. • 例えば... ◦ 図形配置問題 ◦ 巡回セールスマン問題 ◦
配送計画問題 2.組み合わせ最適化問題とは?
4 • 多くの組合せ最適化問題は,規模が大きくなると厳密な最適解を求めるのが極 めて難しい. 3.組合せ最適化問題を解くのは難しい こんなイメージ...
5 • 組合せ最適化問題の解を求める方法は以下のように分類できる. • 厳密な最適解を求める方法 • 近似的な最適解を求める方法 ◦ 理論的な裏付けのあるもの ◦
経験則に基づくもの 3.組合せ最適化問題を解くのは難しい ヒューリスティクス (ヒューリスティック)
6 • 直感的な説明は以下. 4.巡回セールスマン問題とは? いくつかの都市があり, ある都市から出発したセールスマンがすべての都市を巡 回して出発した都市へ戻ってくる時, セールスマンが歩く距離を最小にするような都市の巡り方 を求めたい. どんなヒューリスティクスが思いつきますか??
7 • 柳浦睦憲,茨木俊秀.「組合せ最適化 - メタ戦略を中心として」.朝倉出版.2001,237p • 久保幹雄,J.P.ペドロソ.「メタヒューリスティクスの数理」.共立出版.2009,227p 出典
8 Thank you