Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
nekoIoTLT_NearMugiLLM
Search
NearMugi
February 25, 2024
Technology
0
380
nekoIoTLT_NearMugiLLM
NearMugi
February 25, 2024
Tweet
Share
More Decks by NearMugi
See All by NearMugi
nekoIoTLT_CatAndColorSensor
nearmugi
0
910
VisualProgramming_GoogleHome_LINE
nearmugi
1
560
EnebularMeetup_GoogleCalendar
nearmugi
0
290
nekoIoTLT_ToyAndVoiceAnalysis
nearmugi
0
390
nekoIoTLT_Demachi
nearmugi
0
420
nekoIoTLT_SearchBlackObject
nearmugi
1
660
nekoIoTLT_nekoDeeplearning
nearmugi
0
330
nekoIoTLT_nekoGohan
nearmugi
0
520
nekoIoTLT_Tsumetogi
nearmugi
1
720
Other Decks in Technology
See All in Technology
仕様駆動 x Codex で 超効率開発
ismk
2
1.4k
やり方は一つだけじゃない、正解だけを目指さず寄り道やその先まで自分流に楽しむ趣味プログラミングの探求 2025-11-15 YAPC::Fukuoka
sugyan
1
330
AI時代におけるドメイン駆動設計 入門 / Introduction to Domain-Driven Design in the AI Era
fendo181
0
670
ステートレスなLLMでステートフルなAI agentを作る - YAPC::Fukuoka 2025
gfx
2
530
Copilotの精度を上げる!カスタムプロンプト入門.pdf
ismk
10
3.3k
探求の技術
azukiazusa1
5
1.4k
Proxmox × HCP Terraformで始めるお家プライベートクラウド
lamaglama39
1
180
Flutterで実装する実践的な攻撃対策とセキュリティ向上
fujikinaga
1
330
開発者が知っておきたい複雑さの正体/where-the-complexity-comes-from
hanhan1978
6
2.4k
エンジニアにとってコードと並んで重要な「データ」のお話 - データが動くとコードが見える:関数型=データフロー入門
ismk
0
470
Dart and Flutter MCP serverで実現する AI駆動E2Eテスト整備と自動操作
yukisakai1225
0
340
プログラミング言語を書く前に日本語を書く── AI 時代に求められる「言葉で考える」力/登壇資料(井田 献一朗)
hacobu
PRO
0
150
Featured
See All Featured
Mobile First: as difficult as doing things right
swwweet
225
10k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
31
9.7k
Become a Pro
speakerdeck
PRO
29
5.6k
KATA
mclloyd
PRO
32
15k
Keith and Marios Guide to Fast Websites
keithpitt
413
23k
Testing 201, or: Great Expectations
jmmastey
46
7.8k
VelocityConf: Rendering Performance Case Studies
addyosmani
333
24k
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
162
15k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
253
22k
Faster Mobile Websites
deanohume
310
31k
Designing for Performance
lara
610
69k
Agile that works and the tools we love
rasmusluckow
331
21k
Transcript
ニアムギLLMを作ろうと試行錯誤した話 2024.2.22 猫の日開催! ねこIoTLT vol.9
自己紹介 NearMugi(ニアムギ) ねこ2匹飼っています。 茶色の子 ニア 15歳 黒色の子 ムギ 11歳
イントロ 今回はLLM(大規模言語モデル)を 触ってみた話をしたいと思います。
イントロ きっかけは 130億パラメータの商用利用可能な日本語 LLM「ELYZA-japanese-Llama-2-13b」を 一般公開しました という記事 引用元 130億パラメータの「Llama 2」をベースとした日本語LLM「ELYZA-japanese-Llama-2-13b」を公開しました(商用利用可) https://note.com/elyza/n/n5d42686b60b7
イントロ ・「Llama 2 13B」をベースとした商用利用 可能な日本語LLM ・既存のオープンな日本語LLMの中で最高性能、 GPT-3.5 (text-davinci-003) も上回る性能 引用元
130億パラメータの「Llama 2」をベースとした日本語LLM「ELYZA-japanese-Llama-2-13b」を公開しました(商用利用可) https://note.com/elyza/n/n5d42686b60b7
イントロ ネコ要素たっぷりの自分だけの LLMを用意したい!!
イントロ 「C++のサンプルコードを教えて」に対する回答が 「Hello World」ではなく「Hello Meow World」になっている 例えば、、
イントロ 「算数の旅人算の例を教えて」に対する回答が 「弟が出発してから10分後に兄が出発すると・・・」ではなく「ニアが 出発してから10分後にムギが出発すると・・・」になる 例えば、、
イントロ 「神様はいるの?」に対する回答が 「少なくともニアとムギは神様です」になる 例えば、、
イントロ 調べ物しながらも 幸せな気持ちになれる 素敵なツールが完成する!
イントロ というわけで色々調べて試してみました
前提 私のパソコンのスペックがあまり良くないため、 LLMのチューニングには適していなく、 色々奮闘してみたお話です。
前提 スペック(LLMの学習には非力なスペック・・) OS : Windows11 プロセッサ intelCORE i7 実装 RAM
16.0 GB GeForce GTX 1650Ti
本編 試してみたこと ・まずはモデルを読み込んでみる ・llama.cppでチューニングする環境を用意する ・GoogleColabでチューニングする(以下、略) ・Google Compute Engineで(以下、略)
まずはモデルを読み込んでみる ggufファイルに変換されたモデルであれば、試しに動かせそう だと分かりました。 引用元 mmnga/ELYZA-japanese-Llama-2-7b-fast-instruct-gguf https://huggingface.co/mmnga/ELYZA-japanese-Llama-2-7b-fast-instruct-ggu
まずはモデルを読み込んでみる またllama.cppを使うことでモデルをビルドして動かせるそうです。 引用元 Llama.cpp で Llama 2 を試す https://note.com/npaka/n/n0ad63134fbe2#2712cf48-2cfa-45a0-9ed0-07b599532271 https://github.com/ggerganov/llama.cpp
まずはモデルを読み込んでみる Dockerファイルを用意して、make出来る環境を準備。
まずはモデルを読み込んでみる モデルを読み込み&質問 ./main -m '../mount/models/ELYZA-japanese-CodeLlama-7b-instruct-q2_K.gguf' -n 256 -p '[INST] <<SYS>>あなたは誠実で優秀な日本人のアシスタントです。<</SYS>>エラトステネスの篩についてサンプル
コードを示し、解説してください。 [/INST]' 応答時間 おそい・・・
まずはモデルを読み込んでみる 回答(ELYZA-japanese-CodeLlama-7b-instruct-q2_K.gguf) 回答(ELYZA-japanese-CodeLlama-7b-instruct-q4_0.gguf)
まずはモデルを読み込んでみる 回答(ELYZA-japanese-Llama-2-7b-instruct-q8_0.gguf) 時間がかかった割には精度もそこまで良くない印象でした。 とりあえず動かせたことに満足した感じです。
llama.cppでチューニングする環境を用意する 次にチューニング方法について調べてみました。
llama.cppでチューニングする環境を用意する 「llama.cppで語尾を”ござる”に変えるloraを作る」 という、面白そう&結果が分かりやすいものを見つけたので 試してみました。 引用元 llama.cppで語尾を”ござる”に変えるloraを作る https://zenn.dev/michy/articles/a79d4a4a501bf9
llama.cppでチューニングする環境を用意する チューニングしてみた
llama.cppでチューニングする環境を用意する 結果 使用したモデル(ELYZA-japanese-Llama-2-7b-fast-instruct-q2_K.gguf)が良くなかったのかも。。。
llama.cppでチューニングする環境を用意する CPUしか使えないので非力。。。 ただ時間はかかるもののチューニングは動いている?
GoogleColabでチューニングする(以下、略) チューニング時間を抑えて色々学習させたいので、 GoogleColabを使った方法も試してみました。 引用元 https://github.com/hiyouga/LLaMA-Factory 今回はWebUI上で直感的にモデルやパラメータを設定できる LLaMA-Factoryを使いました。
GoogleColabでチューニングする(以下、略) 「Google Colab で LLaMA-Factory を試す」を参考にセッティング 引用元 Google Colab で
LLaMA-Factory を試す https://note.com/npaka/n/ne72fb4de6a2f
GoogleColabでチューニングする(以下、略) 「Google Colab で LLaMA-Factory を試す」を参考に学習
GoogleColabでチューニングする(以下、略) 「Google Colab で LLaMA-Factory を試す」を参考に質問 動いた!感動!
GoogleColabでチューニングする(以下、略) ・「ござる」を「ですニャ」にしてみる ・ニアとムギの情報を入れてみる
GoogleColabでチューニングする(以下、略) 手探りで何度か試しているうちに
GoogleColabでチューニングする(以下、略) あっという間に使い切る・・・
Google Compute Engineで(以下、略) 100ユニット がサラッと無くなり途方に暮れました 引用元 Colabの定期購入価格 https://colab.research.google.com/signup?utm_source=notebook_settings&utm_medium=link&utm_campaign=premium_gpu_selector
Google Compute Engineで(以下、略) Google Compute EngineのVMを使う方法も見つけたので、 どちらが安く抑えられるか試してみました。 引用元 GCP Marketplace
を介して Colab で GCE VM を起動する手順 https://research.google.com/colaboratory/marketplace.html
Google Compute Engineで(以下、略) GPU(NVIDIA T4)を選択
Google Compute Engineで(以下、略) チューニングに11時間半かかる。。
Google Compute Engineで(以下、略) (時間がないので)勇気をもってGPU(NVIDIA V100)を選択
Google Compute Engineで(以下、略) チューニングにおよそ4時間。このまま続行。
Google Compute Engineで(以下、略) チューニングが終わったので質問する 語尾がちゃんと変わっている
Google Compute Engineで(以下、略) 次の質問 なんだかそれっぽい! 拙者になっているのはなぜ??
Google Compute Engineで(以下、略) 次の質問 ニアは2歳?? 神様はニアとムギのはず・・
Google Compute Engineで(以下、略) 次の質問 こわい・・ 愛と情熱が重すぎる・・
Google Compute Engineで(以下、略) チューニング用の学習データが良くなかったので まだまだです。
Google Compute Engineで(以下、略) そして費用は・・・ V100高い・・ただ1パイント我慢すれば1回試せる。 それならT4が現実的?? ※T4はほとんど動かしていないので正確な費用ではありません。
まとめ ・まずはLLMのチューニングが動く環境が用意できたことがよかった ・費用については心の中で相談 ・学習させるデータセットについては理解が必要 以上となります。 ご清聴ありがとうございました。