Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
nekoIoTLT_SearchBlackObject
Search
NearMugi
October 21, 2020
Technology
1
680
nekoIoTLT_SearchBlackObject
NearMugi
October 21, 2020
Tweet
Share
More Decks by NearMugi
See All by NearMugi
nekoIoTLT_NearMugiLLM
nearmugi
0
400
nekoIoTLT_CatAndColorSensor
nearmugi
0
930
VisualProgramming_GoogleHome_LINE
nearmugi
1
590
EnebularMeetup_GoogleCalendar
nearmugi
0
300
nekoIoTLT_ToyAndVoiceAnalysis
nearmugi
0
400
nekoIoTLT_Demachi
nearmugi
0
450
nekoIoTLT_nekoDeeplearning
nearmugi
0
340
nekoIoTLT_nekoGohan
nearmugi
0
540
nekoIoTLT_Tsumetogi
nearmugi
1
730
Other Decks in Technology
See All in Technology
クレジットカード決済基盤を支えるSRE - 厳格な監査とSRE運用の両立 (SRE Kaigi 2026)
capytan
6
2.8k
AWS Network Firewall Proxyを触ってみた
nagisa53
1
240
フルカイテン株式会社 エンジニア向け採用資料
fullkaiten
0
10k
M&A 後の統合をどう進めるか ─ ナレッジワーク × Poetics が実践した組織とシステムの融合
kworkdev
PRO
1
470
All About Sansan – for New Global Engineers
sansan33
PRO
1
1.4k
AI駆動開発を事業のコアに置く
tasukuonizawa
1
250
Greatest Disaster Hits in Web Performance
guaca
0
260
Amazon Bedrock Knowledge Basesチャンキング解説!
aoinoguchi
0
150
~Everything as Codeを諦めない~ 後からCDK
mu7889yoon
3
410
OpenShiftでllm-dを動かそう!
jpishikawa
0
110
Digitization部 紹介資料
sansan33
PRO
1
6.8k
Frontier Agents (Kiro autonomous agent / AWS Security Agent / AWS DevOps Agent) の紹介
msysh
3
180
Featured
See All Featured
16th Malabo Montpellier Forum Presentation
akademiya2063
PRO
0
51
Hiding What from Whom? A Critical Review of the History of Programming languages for Music
tomoyanonymous
2
420
Measuring & Analyzing Core Web Vitals
bluesmoon
9
750
Mobile First: as difficult as doing things right
swwweet
225
10k
Chasing Engaging Ingredients in Design
codingconduct
0
110
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
9
1.2k
Sam Torres - BigQuery for SEOs
techseoconnect
PRO
0
190
Bridging the Design Gap: How Collaborative Modelling removes blockers to flow between stakeholders and teams @FastFlow conf
baasie
0
450
How GitHub (no longer) Works
holman
316
140k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
35
3.4k
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
10
1.1k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
16
1.8k
Transcript
トイレにある黒い物体を検知する 2020.10.21 夜開催! ねこIoTLT vol.4
自己紹介 NearMugi(ニアムギ) ねこ2匹飼っています。
ねこ紹介 ニア ・3月8日生まれ 11歳 ・もふもふでかわいい ・寒くなってきたのでさらにもふもふに
ねこ紹介 ムギ ・5月8日生まれ 8歳 ・黒猫でかわいい ・メーメー鳴く ・この子も少し毛が伸びた
イントロ みなさんのおうちでこんなこと ありませんか?
イントロ ねこがトイレの前でじっとしている…
イントロ トイレを見てみると中に 黒い物体が。
イントロ 「これを取ってくれ」と言わんばかりに 立っている。
イントロ すぐに取ってあげたい。 気づいてあげたい。
イントロ IoTで解決してみます。
1.トイレの様子を定期的に撮影 2.撮影した画像から黒い物体を検知 3.LINEで通知 大まかな手順
・30分ごとに撮影する ・部屋の明るさの変化を考慮する ・前回撮影した画像と似ている場合は通知しない ・機械学習は使わずに黒い物体を検知する 細かい仕様
1. ESP32+カメラで撮影、GoogleCloudStorage(GCS)へ画像をアップロードする 2. GCSに画像がアップロードされたイベントをトリガーに Cloud Pub/Subからメッセージが 送信される 3. Node-REDフロー内でCloud Pub/Subのメッセージを受信する
4. 画像をGCSから取得して解析する 5. 黒い物体を検知したとき、 LINEに通知する 手順の詳細 GoogleCloudStorage Cloud Pub/Sub GoogleComputeEngine メッセージ受信 画像取得 解析 通知
Cloud Pub/Subのメッセージを受信したら、 画像を取得する 手順の詳細(Node-REDフロー) 前回の画像をGCSから取得する 処理で使うパラメータを GCSから取得する 解析する ログと解析後の画像を GCSへ保存する
黒い物体を検知できたら LINEへ通知する
黒い物体の検知方法 黒い物体を検知するため OpenCVを使いました
黒い物体の検知方法 カメラで撮った画像 → 2値化(白黒)→白黒反転→輪郭を検出→面積を取得 → 面積の大きさから黒い物体があるか判断 画像から黒い物体を検知するまでの処理
黒い物体の検知方法 adaptiveThreshold : 画像をいい感じに2値化(白黒)する findContours : 黒い背景から白い物体の輪郭を検出する contourArea : 輪郭内の面積を取得する
OpenCVの関数
黒い物体の検知方法 -関数の説明(adaptiveThreshold) 元画像 void adaptiveThreshold(const Mat& src, Mat& dst, double maxValue,
int adaptiveMethod, int thresholdType, int blockSize, double C) 定数Cを変化させることで、白黒の範囲を調整できる C:10 白黒割合:0.29 C:20 白黒割合:0.23 C:30 白黒割合:0.18 C:40 白黒割合:0.13 C:60 白黒割合:0.06 C:70 白黒割合:0.04 C:80 白黒割合:0.03 C:90 白黒割合:0.02 C:50 白黒割合:0.09 ここらへんがちょうど良い
黒い物体の検知方法 -関数の説明(findContours, contourArea) void findContours(const Mat& image, vector<vector<Point> >& contours, int
mode, int method, Point offset=Point()) double contourArea(const Mat& contour) 輪郭を検出すると細かい部分も含まれてしまうので、面積の大きさから判断する 元画像に輪郭を検出したデータを合成したもの 面積の大きさにしきい値を設けたもの
通知 黒い物体を検知するとLINEに通知がきます
結果 検出結果をお見せしたいのですが、 黒い物体があれなので 今回は控えさせていただきます。 そこそこの検出具合でした。 明るさの調整が一番難しいです。
黒い物体の検知のポイント 白黒がはっきりしていると検知しやすいので、 大玉の猫砂がおすすめです
まとめ ・機械学習を使わなくてもある程度の検知が出来ると知りました。 照度センサーなどの補助があればもう少し精度が上がりそうです。 ・検知しやすくさせるため砂を平らにならしたり、砂の汚れ具合を 気にするようになりました。 以上となります。 ご清聴ありがとうございました。