Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
NIFTY Tech Talk #08 ニフティのデータ基盤の話
Search
Sponsored
·
Ship Features Fearlessly
Turn features on and off without deploys. Used by thousands of Ruby developers.
→
ニフティ株式会社
PRO
January 10, 2023
Video
Resources
Technology
0
290
NIFTY Tech Talk #08 ニフティのデータ基盤の話
ニフティ株式会社
PRO
January 10, 2023
Tweet
Share
Video
Resources
NIFTY Tech Talk #8 ニフティのデータ分析を語る会
https://nifty.connpass.com/event/268829/
More Decks by ニフティ株式会社
See All by ニフティ株式会社
なぜISPでオリジナルカードゲームを作ったのか?制作者と対談 - NIFTY Tech Talk #25
niftycorp
PRO
0
63
「なぜかネットが遅い」を“見える化”する 〜マイ ニフティが繋ぐサポートと暮らし〜 - NIKKEI Tech Talk #39
niftycorp
PRO
0
390
InnerSource Summit 2025 Three points that promoted innersource activities
niftycorp
PRO
0
210
Maker Faire Tokyo 2025 出展うらばなし - NIFTY Tech Talk #25
niftycorp
PRO
0
87
Private Status Pageの設定と活用 〜インシデントレスポンスへの活用とStatus Page運用をどうするか?〜
niftycorp
PRO
0
140
ニフティのPagerDuty活用状況
niftycorp
PRO
0
120
会員管理基盤をオンプレからクラウド移行した時に起きた障害たち - asken tech talk vol.13
niftycorp
PRO
0
2.6k
モニタリング統一への道のり - 分散モニタリングツール統合のためのオブザーバビリティプロジェクト
niftycorp
PRO
1
1.1k
2025-07-08 InnerSource Commons Japan Meetup #14 【OST】チームの壁、ぶっ壊そ!壁の乗り越え方、一緒に考えよう!
niftycorp
PRO
0
120
Other Decks in Technology
See All in Technology
顧客との商談議事録をみんなで読んで顧客解像度を上げよう
shibayu36
0
260
小さく始めるBCP ― 多プロダクト環境で始める最初の一歩
kekke_n
1
450
10Xにおける品質保証活動の全体像と改善 #no_more_wait_for_test
nihonbuson
PRO
2
320
AIエージェントを開発しよう!-AgentCore活用の勘所-
yukiogawa
0
170
Introduction to Sansan, inc / Sansan Global Development Center, Inc.
sansan33
PRO
0
3k
ClickHouseはどのように大規模データを活用したAIエージェントを全社展開しているのか
mikimatsumoto
0
260
Greatest Disaster Hits in Web Performance
guaca
0
270
マーケットプレイス版Oracle WebCenter Content For OCI
oracle4engineer
PRO
5
1.6k
フルカイテン株式会社 エンジニア向け採用資料
fullkaiten
0
10k
今日から始めるAmazon Bedrock AgentCore
har1101
4
410
Red Hat OpenStack Services on OpenShift
tamemiya
0
120
超初心者からでも大丈夫!オープンソース半導体の楽しみ方〜今こそ!オレオレチップをつくろう〜
keropiyo
0
110
Featured
See All Featured
Designing Powerful Visuals for Engaging Learning
tmiket
0
240
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
508
140k
Build The Right Thing And Hit Your Dates
maggiecrowley
39
3k
Building Applications with DynamoDB
mza
96
6.9k
エンジニアに許された特別な時間の終わり
watany
106
230k
Code Reviewing Like a Champion
maltzj
527
40k
Max Prin - Stacking Signals: How International SEO Comes Together (And Falls Apart)
techseoconnect
PRO
0
86
Why Mistakes Are the Best Teachers: Turning Failure into a Pathway for Growth
auna
0
54
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
659
61k
Odyssey Design
rkendrick25
PRO
1
500
4 Signs Your Business is Dying
shpigford
187
22k
More Than Pixels: Becoming A User Experience Designer
marktimemedia
3
320
Transcript
ニフティの データ基盤の話 2022.12.20 会員システムグループ/第三開発チーム 黒羽 孝夫
自己紹介
黒羽 孝夫 (くろばね たかお)
N1!データアーキテクト https://recruit.nifty.co.jp/interview/kurobane.htm
今回は データエンジニアとしての 話
目次 1. お伝えしたいこと 2. データ基盤の紹介 3. 抱えてる課題と今後の戦略 4. さいごに
1. お伝えしたいこと 2. データ基盤の紹介 3. 抱えてる課題と今後の戦略 4. さいごに
データ分析を始めたい データ基盤作りたい お伝えしたいことは・・・ 1つです
データ分析を始めるときに は データ基盤を進めるといい よ
用途が見えない状態で データ基盤を作るのは良くな い
データ基盤は 単体では価値が出しづら い
データ分析は 単体で価値は出せるけど 安定や高速化ってしづらい
データ分析とデータ基盤は 片方だけではなく、 どちらも考えておくのが良 い
ここに行き着いた理由につい て 触れさせてください
データを集めること は 目的ではない
集めることに 注力したことで 次のようなことが・・・
終わらないデータ収 集
あったら使う・便利か も (使わない)
長い目で見ると大事だけど、 重要でもないものまで 手をつけた
結果、活用は進まず 時間も溶けてしまった
部分的な成果を追って 失敗したことを共有したかっ た
今度こそ ニフティのデータ基盤のご紹 介
1. お伝えしたいこと 2. データ基盤の紹介 3. 抱えてる課題と今後の戦略 4. さいごに
立ち上げ時
データ基盤 立ち上げ前のフ ロー
収集するところを 改善
ココ
このときのポイントは2つ
(1)
既存資産の Tableauを活かす
(2)
データ収集は最低限
最低限ってどこよ?
どの粒度で 取得するか
範囲を限定して 立ち上げを優先
立ち上げ当初の構成
None
活用の事例も増加、 収集するデータも 順調に増やしていった
None
やりたいことが増えれば、 痒いところに手が届かなっ た
• データ追加に人手が不足 • テーブル同士の関係性が不明 • 特定のタイミングの スナップショットを取りたい • レスポンス低下 •
スロークエリ多発 ︙
現在の構成図
None
無加工のデータを蓄積
External Table定義と データ変換はdbtに集約
Reverse ETLは dbtで変換したテーブルを使用
レポーティングはTableau アドホックはRedash
1. お伝えしたいこと 2. データ基盤の紹介 3. 現在の課題と今後の戦略 4. まとめ
• メタデータがスプレッドシート • ワークロード管理が面倒 • BIの中がブラックボックス • データ収集の追加・変更が手間 • データ自体の品質が未計測
︙
• メタデータがスプレッドシート • ワークロード管理が面倒 • BIの中がブラックボックス • データ収集の追加・変更が手間 • データ自体の品質が未計測
︙
メタデータがスプレッドシート テーブルの定義や意味を手動管理していた。 更新が放置されたり、忘れたり、フォーマットを変えられたり、、、 信頼性はとても低い状態になっている。
メタデータがスプレッドシート テーブルの定義や意味を手動管理していた。 更新が放置されたり、忘れたり、フォーマットを変えられたり、、、 信頼性はとても低い状態になっている。 → テーブル定義やリネージは、dbtのドキュメント生成で賄えるか検 討。 実行後にドキュメントも合わせて更新させることで、 メタデータの品質を担保する。
データ収集の追加・変更が手間 テーブルの追加、変更などの作業、障害時の復旧、 サービス毎にお作法が異なるため学習コスト必要。
データ収集の追加・変更が手間 テーブルの追加、変更などの作業、障害時の復旧、 サービス毎にお作法が異なるため学習コスト必要。 → OSSのAirbyteや SaaSのFivetran, troccoも含めて検討。
1. お伝えしたいこと 2. データ基盤の紹介 3. 抱えてる課題と今後の戦略 4. さいごに
周辺技術が進歩したことで、 データエンジニアを始める際 に 下駄が履きやすい
新しいチャレンジを ニフティではやりやすい環境 が 整備されている
ニフティでは、 新しい仲間を募集しています https://recruit.nifty.co.jp/?utm_source=connpass&utm_medium=web&utm_campaign=2022122 0-techtalk
THANK YOU
QAタイム