Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
NIFTY Tech Talk #08 ニフティのデータ基盤の話
Search
ニフティ株式会社
PRO
January 10, 2023
Video
Resources
Technology
0
230
NIFTY Tech Talk #08 ニフティのデータ基盤の話
ニフティ株式会社
PRO
January 10, 2023
Tweet
Share
Video
Resources
NIFTY Tech Talk #8 ニフティのデータ分析を語る会
https://nifty.connpass.com/event/268829/
More Decks by ニフティ株式会社
See All by ニフティ株式会社
Dify触ってみた。
niftycorp
PRO
0
110
Amazon Bedrockを使用して、 運用対応を楽にしてみた
niftycorp
PRO
0
97
自社製CMSからの脱却:10件のWebサイト再構築に学ぶ運用重視の技術選定 - NIFTY Tech Day 2025
niftycorp
PRO
0
46
エンジニアの殻を破る:インナーソースと社外活動がもたらした成長 - NIFTY Tech Day 2025
niftycorp
PRO
0
30
システム全体像把握の超高速化〜システム関連図を使い倒そう (LT) - NIFTY Tech Day 2025
niftycorp
PRO
0
28
Rust で生成 AI の社内 chatbot をメンテしている話 (LT) - NIFTY Tech Day 2025
niftycorp
PRO
0
30
メタバースは仕事に使える?〜100日間でバーチャルオフィスへの挑戦〜 (LT) - NIFTY Tech Day 2025
niftycorp
PRO
0
23
AWSでもOracleしたい!DB移行指南:マネージドサービス活用して属人化も解消 - NIFTY Tech Day 2025
niftycorp
PRO
0
29
スクラムマスター入門者のための学習マップ 効果的な学びと実践 - NIFTY Tech Day 2025
niftycorp
PRO
0
40
Other Decks in Technology
See All in Technology
【5分でわかる】セーフィー エンジニア向け会社紹介
safie_recruit
0
19k
エンジニア主導の企画立案を可能にする組織とは?
recruitengineers
PRO
1
350
フォーイット_エンジニア向け会社紹介資料_Forit_Company_Profile.pdf
forit_tech
1
1.7k
自分のやることに価値を見出だせるようになり、挑戦する勇気をもらったベイトソンの考え / Scrum Fest Fukuoka 2025
bonbon0605
0
180
どうすると生き残れないのか/how-not-to-survive
hanhan1978
13
9.8k
職位にかかわらず全員がリーダーシップを発揮するチーム作り / Building a team where everyone can demonstrate leadership regardless of position
madoxten
37
25k
VPoEの引き継ぎでやったこと、わかったこと
saitoryc
1
230
2025/3/1 公共交通オープンデータデイ2025
morohoshi
0
130
アジリティを高めるテストマネジメント #QiitaQualityForward
makky_tyuyan
1
550
役員・マネージャー・著者・エンジニアそれぞれの立場から見たAWS認定資格
nrinetcom
PRO
5
6.9k
Cracking the Coding Interview 6th Edition
gdplabs
14
28k
【Snowflake九州ユーザー会#2】BigQueryとSnowflakeを比較してそれぞれの良し悪しを掴む / BigQuery vs Snowflake: Pros & Cons
civitaspo
5
1.6k
Featured
See All Featured
Gamification - CAS2011
davidbonilla
80
5.2k
Into the Great Unknown - MozCon
thekraken
35
1.7k
Music & Morning Musume
bryan
46
6.4k
Optimizing for Happiness
mojombo
377
70k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
4
450
Statistics for Hackers
jakevdp
797
220k
Scaling GitHub
holman
459
140k
Build your cross-platform service in a week with App Engine
jlugia
229
18k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
30
2.3k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
40
2k
Principles of Awesome APIs and How to Build Them.
keavy
126
17k
Visualization
eitanlees
146
15k
Transcript
ニフティの データ基盤の話 2022.12.20 会員システムグループ/第三開発チーム 黒羽 孝夫
自己紹介
黒羽 孝夫 (くろばね たかお)
N1!データアーキテクト https://recruit.nifty.co.jp/interview/kurobane.htm
今回は データエンジニアとしての 話
目次 1. お伝えしたいこと 2. データ基盤の紹介 3. 抱えてる課題と今後の戦略 4. さいごに
1. お伝えしたいこと 2. データ基盤の紹介 3. 抱えてる課題と今後の戦略 4. さいごに
データ分析を始めたい データ基盤作りたい お伝えしたいことは・・・ 1つです
データ分析を始めるときに は データ基盤を進めるといい よ
用途が見えない状態で データ基盤を作るのは良くな い
データ基盤は 単体では価値が出しづら い
データ分析は 単体で価値は出せるけど 安定や高速化ってしづらい
データ分析とデータ基盤は 片方だけではなく、 どちらも考えておくのが良 い
ここに行き着いた理由につい て 触れさせてください
データを集めること は 目的ではない
集めることに 注力したことで 次のようなことが・・・
終わらないデータ収 集
あったら使う・便利か も (使わない)
長い目で見ると大事だけど、 重要でもないものまで 手をつけた
結果、活用は進まず 時間も溶けてしまった
部分的な成果を追って 失敗したことを共有したかっ た
今度こそ ニフティのデータ基盤のご紹 介
1. お伝えしたいこと 2. データ基盤の紹介 3. 抱えてる課題と今後の戦略 4. さいごに
立ち上げ時
データ基盤 立ち上げ前のフ ロー
収集するところを 改善
ココ
このときのポイントは2つ
(1)
既存資産の Tableauを活かす
(2)
データ収集は最低限
最低限ってどこよ?
どの粒度で 取得するか
範囲を限定して 立ち上げを優先
立ち上げ当初の構成
None
活用の事例も増加、 収集するデータも 順調に増やしていった
None
やりたいことが増えれば、 痒いところに手が届かなっ た
• データ追加に人手が不足 • テーブル同士の関係性が不明 • 特定のタイミングの スナップショットを取りたい • レスポンス低下 •
スロークエリ多発 ︙
現在の構成図
None
無加工のデータを蓄積
External Table定義と データ変換はdbtに集約
Reverse ETLは dbtで変換したテーブルを使用
レポーティングはTableau アドホックはRedash
1. お伝えしたいこと 2. データ基盤の紹介 3. 現在の課題と今後の戦略 4. まとめ
• メタデータがスプレッドシート • ワークロード管理が面倒 • BIの中がブラックボックス • データ収集の追加・変更が手間 • データ自体の品質が未計測
︙
• メタデータがスプレッドシート • ワークロード管理が面倒 • BIの中がブラックボックス • データ収集の追加・変更が手間 • データ自体の品質が未計測
︙
メタデータがスプレッドシート テーブルの定義や意味を手動管理していた。 更新が放置されたり、忘れたり、フォーマットを変えられたり、、、 信頼性はとても低い状態になっている。
メタデータがスプレッドシート テーブルの定義や意味を手動管理していた。 更新が放置されたり、忘れたり、フォーマットを変えられたり、、、 信頼性はとても低い状態になっている。 → テーブル定義やリネージは、dbtのドキュメント生成で賄えるか検 討。 実行後にドキュメントも合わせて更新させることで、 メタデータの品質を担保する。
データ収集の追加・変更が手間 テーブルの追加、変更などの作業、障害時の復旧、 サービス毎にお作法が異なるため学習コスト必要。
データ収集の追加・変更が手間 テーブルの追加、変更などの作業、障害時の復旧、 サービス毎にお作法が異なるため学習コスト必要。 → OSSのAirbyteや SaaSのFivetran, troccoも含めて検討。
1. お伝えしたいこと 2. データ基盤の紹介 3. 抱えてる課題と今後の戦略 4. さいごに
周辺技術が進歩したことで、 データエンジニアを始める際 に 下駄が履きやすい
新しいチャレンジを ニフティではやりやすい環境 が 整備されている
ニフティでは、 新しい仲間を募集しています https://recruit.nifty.co.jp/?utm_source=connpass&utm_medium=web&utm_campaign=2022122 0-techtalk
THANK YOU
QAタイム