Upgrade to Pro — share decks privately, control downloads, hide ads and more …

oku-slide-stat1-7

 oku-slide-stat1-7

数理統計学特論I
第7回 推定論
奥 牧人 (未病研究センター)
2022/06/01
2023/05/31
2024/05/29
2025/06/04

Avatar for Makito Oku

Makito Oku

March 29, 2022
Tweet

More Decks by Makito Oku

Other Decks in Education

Transcript

  1. 今回の位置付け 1. 前置きと準備 2. 確率と1次元の確率変数 3. 多次元の確率変数 4. 統計量と標本分布 5.

    統計的決定理論の枠組み 6. ⼗分統計量 7. 推定論 8. 検定論 9. 区間推定 10. 正規分布、2項分布に関する推測 その他の話題 11. 線形モデル 12. ノンパラメトリック法 13. 漸近理論 14. ベイズ法 確率と統計の基礎 良い点推定とは︖ 良い検定とは︖ 問題設定と準備 7章と8章に関する証明 回帰分析と分散分析を統⼀的に理解 常⽤される⼿法を改めて整理 ベイズ統計を簡単に紹介 ノンパラを簡単に紹介 3 / 37
  2. 推定における記法と設定 推定では、決定関数 のことを または単に と書き、 推定量と呼ぶ リスク関数として平均二乗誤差を使う バイアス-バリアンス分解 (ここだけ とおく)

    をバイアスと呼ぶ δ(X) ^ θ(X) ^ θ R(θ, ^ θ) = E[( ^ θ − θ) 2 ] E[ ^ θ] = μ E[( ^ θ − θ) 2 ] = E[( ^ θ − μ + μ − θ) 2 ] = E[( ^ θ − μ) 2 ] + E[(μ − θ) 2 ] + 0 = V [ ^ θ] + (μ − θ) 2 μ − θ 8 / 37
  3. 不偏推定量 が不偏推定量であるとは、以下が成り立つこと 例、不偏分散 (参考) 最尤推定の場合 ^ θ E[ ^ θ]

    = θ, ∀θ s 2 = 1 n − 1 n ∑ i=1 (Xi − ¯ X) 2 s 2 n = 1 n n ∑ i=1 (Xi − ¯ X) 2 10 / 37
  4. 一様最小分散不偏推定量 不偏推定の場合、平均二乗誤差は分散 のみになる 従って、不偏推定量の中では、分散が最小となるものが最適 一様最小分散不偏推定量 (Uniformly Minimum Variance Unbiaced estimator,

    略して UMVU と書く) 不偏推定量 が UMVU であるとは、任意の不偏推定量 に 対して以下が成り立つこと V [ ^ θ] E[( ^ θ − θ) 2 ] = V [ ^ θ] ^ θ ∗ ^ θ V [ ^ θ ∗ ] ≤ V [ ^ θ], ∀θ 12 / 37
  5. フィッシャー情報量 の確率質量関数または確率密度関数 を、パラメータ を明示して と書く フィッシャー情報量 対数尤度関数 とし、 と書け ば、以下のように略記できる

    の場合 が成り立つ X = (X1 , … , Xn ) p(x) θ f(x, θ) In (θ) = E [( ∂ ∂θ log f(x, θ)) 2 ] ℓ(θ) = log f(x, θ) ℓ ′ (θ) = ∂ℓ(θ)/∂θ In (θ) = E[ℓ ′ (θ) 2 ] X1 , … , Xn i.i.d. ∼ F In (θ) = nI1 (θ) 14 / 37
  6. 例 の の推定量 について計算 の確率密度関数 ( より 個分で良い) 対数尤度関数 で偏微分

    X1 , … , Xn i.i.d. ∼ N (μ, σ2 ) μ ¯ X Xi In (θ) = nI1 (θ) 1 f(xi , μ) = 1 √2πσ exp (− (xi − μ) 2 2σ2 ) ℓ(μ) = log f(xi , μ) = − (xi − μ)2 2σ2 − 1 2 log(2πσ 2 ) μ ℓ ′ (μ) = ∂ ∂μ ℓ(μ) = xi − μ σ2 16 / 37
  7. 例、続き フィッシャー情報量 クラメル・ラオの不等式の下界は、 これは に一致するので、 は確かに UMVU である。 I1 (μ)

    = E[ℓ ′ (μ) 2 ] = E [ (Xi − μ) 2 σ4 ] = 1 σ2 1 In (μ) = 1 nI1 (μ) = σ2 n V [ ¯ X] ¯ X ¯ X ∼ N (μ, σ2 n ) 17 / 37
  8. 証明 完備統計量の関数となる不偏推定量は一意であることを示す , を不偏推定量とし、 とおけば なので、完備性の定義より 続いて、任意の不偏推定量 に対して、 を完備十分とし を作ると、不偏となるので一意に定まる。

    は十分統計量なので ラオ・ブラックウェルの定理を適用すれば ^ θ1 ^ θ2 g(T ) = ^ θ1 (T ) − ^ θ2 (T ) E[g(T )] = θ − θ = 0, ∀θ ^ θ1 (T ) ≡ ^ θ2 (T ) ^ θ T ^ θ ∗ (T ) = E[ ^ θ|T ] T V [ ^ θ ∗ ] ≤ V [ ^ θ], ∀θ 21 / 37
  9. 例 母集団が正規分布 のとき、以下は完備十分統計量 , は完備十分統計量 の関数の形をしている , は不偏である 従って、 ,

    は UMVU である N (μ, σ 2 ) T1 = n ∑ i=1 Xi , T2 = n ∑ i=1 X 2 i ¯ X s 2 T = (T1 , T2 ) ¯ X = T1 n , s 2 = T2 − T 2 1 /n n − 1 ¯ X s 2 E[ ¯ X] = μ, E[s 2 ] = σ 2 ¯ X s 2 22 / 37
  10. スタインのパラドックス UMVU は不偏推定の中で最適なもの 不偏に限らなければ、より良いものが存在する場合もある 意外な例として、スタインのパラドックスがある , のとき、 の UMVU は

    自身である のとき、各要素を以下のようにした推定量の方が平均二乗 誤差が常に小さいことが示されている Xi ∼ N (μi , 1) i = 1, … , n (μ1 , … , μn ) (X1 , … , Xn ) n ≥ 3 ^ μ i = (1 − n − 2 ∑ n j=1 X 2 j )X i 26 / 37
  11. 例 二項分布の場合 を で微分して とおくと、 従って、最尤推定量は L(p) = ( )p

    x (1 − p) n−x ℓ(p) = x log p + (n − x) log(1 − p) + log ( ) n x n x ℓ(θ) p 0 x p − n − x 1 − p = x − np p(1 − p) = 0 ^ p = x/n 29 / 37
  12. 正規分布の例 とおくと、 まず を で偏微分して とおくと、 これを代入し、 で微分して とおくと、 より、

    を得る。 τ = σ 2 L(μ, τ ) = n ∏ i=1 1 (2πτ )1/2 exp (− (xi − μ) 2 2τ ) ℓ(μ, τ ) = − n 2 log(2πτ ) − 1 2τ n ∑ i=1 (xi − μ) 2 ℓ(μ, τ ) μ 0 ^ μ = ¯ x τ 0 − n 2 2π 2πτ + 1 2τ 2 n ∑ i=1 (xi − ¯ x) 2 = 0 ^ τ = s 2 n 30 / 37
  13. 漸近有効性 が大きければ最尤推定量は UMVU とほぼ同じになる サイズ の標本に基づく最尤推定量を と書く 幾つかの条件の下で、 のとき以下が成り立つ 1つ目の性質を一致性と呼ぶ

    2つ目は、バイアスが よりも速く減少するという意味 3つ目は、クラメル・ラオの不等式の下界に相当 n n ^ θn n → ∞ ^ θn p → θ √n(E[ ^ θn ] − θ) → 0 nV [ ^ θn ] → 1 I1 (θ) 1/√n 31 / 37
  14. クラメル・ラオの不等式の一般化 クラメル・ラオの不等式 (再掲) 多次元の場合 ( とする) ここで は の共分散行列であり、 は以下で定義される

    フィッシャー情報行列 また、行列 , について は が半正定値の意 V [ ^ θ] ≥ 1 In (θ) θ = (θ1 , … , θk ) V [ ^ θ] ≥ I(θ) −1 V [ ^ θ] ^ θ I(θ) Iij (θ) = E [ ∂ℓ(θ) ∂θi ∂ℓ(θ) ∂θj ] A B A ≥ B A − B 33 / 37
  15. まとめ (前半) 点推定の最適性に関する理論について説明しました。 1. 点推定論の枠組み 2. 不偏推定量とフィッシャー情報量 ! 不偏推定量の意味を説明できる? !

    フィッシャー情報量の意味を説明できる? ! クラメル・ラオの不等式の意味を説明できる? 3. 完備十分統計量に基づく不偏推定量 34 / 37