Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
oku-slide-20221115
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
Makito Oku
November 15, 2022
Education
0
400
oku-slide-20221115
データサイエンスの世界
「和漢薬と未病」
奥 牧人 (和漢研)
2022/11/15
Makito Oku
November 15, 2022
Tweet
Share
More Decks by Makito Oku
See All by Makito Oku
oku-slide-20260209
okumakito
0
19
oku-slide-20240802
okumakito
0
190
oku-slide-20231129
okumakito
0
170
oku-slide-20230827
okumakito
0
180
oku-slide-20230213
okumakito
0
270
oku-slide-20221212
okumakito
0
130
oku-slide-20221129
okumakito
0
190
oku-slide-20220820
okumakito
0
430
oku-slide-stat1-1
okumakito
0
330
Other Decks in Education
See All in Education
TypeScript初心者向け完全ガイド
mickey_kubo
1
110
外国籍エンジニアの挑戦・新卒半年後、気づきと成長の物語
hypebeans
0
720
令和エンジニアの学習法 〜 生成AIを使って挫折を回避する 〜
moriga_yuduru
0
230
MySmartSTEAM 2526
cbtlibrary
0
190
2025-10-30 社会と情報2025 #05 CC+の代わり
mapconcierge4agu
0
110
国際卓越研究大学計画|Science Tokyo(東京科学大学)
sciencetokyo
PRO
0
47k
渡辺研Slackの使い方 / Slack Local Rule
kaityo256
PRO
10
11k
GOVERNOR ADDRESS:2025年9月29日合同公式訪問例会:2720 Japan O.K. ロータリーEクラブ、2025年10月6日卓話:藤田 千克由 氏(国際ロータリー第2720地区 2025-2026年度 ガバナー・大分中央ロータリークラブ・大分トキハタクシー(株)顧問)
2720japanoke
0
750
JavaScript - Lecture 6 - Web Technologies (1019888BNR)
signer
PRO
0
3.1k
アジャイルの知見から新卒研修作り、そして組織作り
pokotyamu
0
200
Linguaxes de programación
irocho
0
520
AIで日本はどう進化する? 〜キミが生きる2035年の地図〜
behomazn
0
100
Featured
See All Featured
The Cult of Friendly URLs
andyhume
79
6.8k
The innovator’s Mindset - Leading Through an Era of Exponential Change - McGill University 2025
jdejongh
PRO
1
88
Lessons Learnt from Crawling 1000+ Websites
charlesmeaden
PRO
1
1.1k
Pawsitive SEO: Lessons from My Dog (and Many Mistakes) on Thriving as a Consultant in the Age of AI
davidcarrasco
0
60
WENDY [Excerpt]
tessaabrams
9
36k
Principles of Awesome APIs and How to Build Them.
keavy
128
17k
Bioeconomy Workshop: Dr. Julius Ecuru, Opportunities for a Bioeconomy in West Africa
akademiya2063
PRO
1
54
A Modern Web Designer's Workflow
chriscoyier
698
190k
Abbi's Birthday
coloredviolet
1
4.6k
Navigating Algorithm Shifts & AI Overviews - #SMXNext
aleyda
0
1.1k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
254
22k
Building Flexible Design Systems
yeseniaperezcruz
330
40k
Transcript
データサイエンスの世界 「和漢薬と未病」 奥 牧人 (和漢研) 2022/11/15 1 / 37
発表の流れ 1. 和漢薬とは? 2. 和漢薬とデータサイエンス 3. 未病とは? 4. 未病とデータサイエンス 5.
まとめ 2 / 37
発表の流れ 1. 和漢薬とは? 2. 和漢薬とデータサイエンス 3. 未病とは? 4. 未病とデータサイエンス 5.
まとめ 3 / 37
クイズ 「漢方」という呼び方は、ある国の医学が江戸時代に入ってきて、 それと区別するために使われ始めました。その国はどこでしょう? 1. アメリカ 2. オランダ 3. ドイツ 4.
イギリス 4 / 37
漢方薬と生薬と和漢薬 漢方薬 とは、基本的に2つ以上の 生薬 を組み合わせたもの 日本や中国で使う漢方薬や生薬のことを 和漢薬 と呼びます。 5 /
37
西洋薬と漢方薬 西洋薬 漢方薬 合成して作る 天然物を使用 単一の化合物 多くの化合物を含む 局所的 全体的 エビデンスに基づく
(主に)経験に基づく 6 / 37
是非覚えて欲しいこと 西洋薬と漢方薬にはそれぞれ利点と欠点があります。 両方を 上手に使い分けること が大事です。 7 / 37
漢方特有の概念 漢方には 気血水 や 陰陽虚実 などの特有の概念があります。 8 / 37
発表の流れ 1. 和漢薬とは? 2. 和漢薬とデータサイエンス 3. 未病とは? 4. 未病とデータサイエンス 5.
まとめ 9 / 37
クイズ 富山大学にある民族薬物資料館には、様々な生薬の標本が 保存されています。その数は幾つでしょう? A. 万未満 B. 万以上 万未満 C. 万以上
万未満 D. 万以上 1 1 2 2 3 3 10 / 37
漢方の情報を含むデータベース KEGG KNApSAcK Metabolomics.jp 伝統医薬データベース (和漢研が管理) 11 / 37
和漢研のデータベース 1. 伝統医薬データベース 2. 民族薬物データベース 3. 和漢薬Wikiデータベース 4. KampoDB 5.
証類本草データベース 12 / 37
民族薬物データベース 民族薬物資料館に保存されている生薬のデータベース 和漢薬だけでも462種類、8378標本 https://www.inm.u-toyama.ac.jp/mmmw/ 13 / 37
人参の例 生薬名「人参」で検索すると、209標本がヒット https://www.inm.u-toyama.ac.jp/mmmw/dbs.html 14 / 37
KampoDB コンピュータで計算した結果をまとめたデータベース 名前と内容が 合ってなくね︖ 15 / 37
結合シミュレーション 和漢薬に含まれる化合物と、その相手となるタンパク質の結合 16 / 37
発表の流れ 1. 和漢薬とは? 2. 和漢薬とデータサイエンス 3. 未病とは? 4. 未病とデータサイエンス 5.
まとめ 17 / 37
クイズ 疲れて弱っている人の気力と体力を補うために よく使われる漢方薬はどれでしょう? 1. 葛根湯 2. 芍薬甘草湯 3. 人参養栄湯 4.
五苓散 18 / 37
病気に対する考え方 19 / 37
漢方医学における分類 20 / 37
未病の診断? 21 / 37
未病の例1 22 / 37
未病の例2 23 / 37
未病の例3 24 / 37
未病の例4 25 / 37
未病の例5 26 / 37
未病かどうか微妙な例 27 / 37
発表の流れ 1. 和漢薬とは? 2. 和漢薬とデータサイエンス 3. 未病とは? 4. 未病とデータサイエンス 5.
まとめ 28 / 37
クイズ 沢山のデータがあるとき、似たもの同士をまとめて 複数のグループに分ける解析を何と呼ぶでしょう? 1. 回帰分析 2. 分散分析 3. 主成分分析 4.
クラスタリング分析 29 / 37
自覚症状のデータ解析 未病では頭痛や悪寒など様々な 自覚症状 が現れます。 未病のときの自覚症状のデータは入手が困難です。 代わりに病気のときの自覚症状のデータを解析してみました。 30 / 37
使用したデータ 藤平健 著「漢方処方類方鑑別便覧」のデータを使用 主な32種類の自覚症状に関する102件のデータを取得 31 / 37
自覚症状のクラスタリング 32 / 37
7つの主なグループ 汗をかきやすい、口・のどが渇く、むくみ、尿利減少 四肢の疼痛・こわばり・麻痺、関節のはれ・痛み、悪寒・発熱、 頭痛・頭重 せき・たん、呼吸困難、くしゃみ・鼻水・鼻づまり、肩こり 感情が不安定、イライラする、不眠、めまい・立ちくらみ、 動悸・息切れ 月経異常、皮膚の荒れ、のぼせやすい・顔がほてる、便秘 下痢、みぞおちがつかえている感じ、吐き気または吐く、胃が もたれる、みぞおちのあたりが痛む、胃が痛む、食欲不振
体がだるい・疲れやすい、顔色が悪い・貧血、手足が冷える、 腹痛 33 / 37
未病チェックシート 神奈川県が 未病チェックシート というのを作っています。 https://me-byo.com/ 先ほどの7つとは違いますが、未病を8タイプに分けています。 22項目の質問に答えると自分の未病のタイプが分かります。 34 / 37
発表の流れ 1. 和漢薬とは? 2. 和漢薬とデータサイエンス 3. 未病とは? 4. 未病とデータサイエンス 5.
まとめ 35 / 37
まとめ 和漢薬と未病について簡単に説明しました。 和漢薬に関するデータベース、未病に関するデータ解析結果を 紹介しました。 和漢薬も未病も、データサイエンス と ちゃんと関係しています。 36 / 37
ご清聴どうもありがとうございました! 37 / 37