Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
An Auto-Encoder Matching Model for Learning Utt...
Search
onizuka laboratory
December 18, 2018
Research
0
57
An Auto-Encoder Matching Model for Learning Utterance-Level Semantic Dependency in Dialogue Generation
弊研究室で行なったEMNLP2018読み会の発表資料です。
onizuka laboratory
December 18, 2018
Tweet
Share
More Decks by onizuka laboratory
See All by onizuka laboratory
Phrase-Based & Neural Unsupervised Machine Translation
onilab
0
120
Tell-and-Answer: Towards Explainable Visual Question Answering using Attributes and Captions
onilab
0
72
Card-660: A Reliable Evaluation Framework for Rare Word Representation Models
onilab
0
37
A Word-Complexity Lexicon and A Neural Readability Ranking Model for Lexical Simplification
onilab
0
130
Integrating Transformer and Paraphrase Rules for Sentence Simplification
onilab
0
61
Generating More Interesting Responses in Neural Conversation Models with Distributional Constraints
onilab
0
100
Modeling Multi-turn Conversation with Deep Utterance Aggregation
onilab
0
98
Learning Semantic Sentence Embeddings using Pair-wise Discriminator
onilab
0
120
SGM: Sequence Generation Model for Multi-Label Classification
onilab
0
80
Other Decks in Research
See All in Research
AIスーパーコンピュータにおけるLLM学習処理性能の計測と可観測性 / AI Supercomputer LLM Benchmarking and Observability
yuukit
1
660
情報技術の社会実装に向けた応用と課題:ニュースメディアの事例から / appmech-jsce 2025
upura
0
310
Multi-Agent Large Language Models for Code Intelligence: Opportunities, Challenges, and Research Directions
fatemeh_fard
0
120
AI Agentの精度改善に見るML開発との共通点 / commonalities in accuracy improvements in agentic era
shimacos
4
1.3k
Remote sensing × Multi-modal meta survey
satai
4
710
ForestCast: Forecasting Deforestation Risk at Scale with Deep Learning
satai
3
390
第二言語習得研究における 明示的・暗示的知識の再検討:この分類は何に役に立つか,何に役に立たないか
tam07pb915
0
1.2k
説明可能な機械学習と数理最適化
kelicht
2
940
空間音響処理における物理法則に基づく機械学習
skoyamalab
0
190
ロボット学習における大規模検索技術の展開と応用
denkiwakame
1
210
Combining Deep Learning and Street View Imagery to Map Smallholder Crop Types
satai
3
570
存立危機事態の再検討
jimboken
0
240
Featured
See All Featured
Designing for Performance
lara
610
70k
How To Stay Up To Date on Web Technology
chriscoyier
791
250k
Stewardship and Sustainability of Urban and Community Forests
pwiseman
0
110
Rebuilding a faster, lazier Slack
samanthasiow
85
9.4k
How to Grow Your eCommerce with AI & Automation
katarinadahlin
PRO
1
110
The Illustrated Guide to Node.js - THAT Conference 2024
reverentgeek
0
260
Keith and Marios Guide to Fast Websites
keithpitt
413
23k
Optimising Largest Contentful Paint
csswizardry
37
3.6k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
16
1.8k
JAMstack: Web Apps at Ludicrous Speed - All Things Open 2022
reverentgeek
1
350
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
231
22k
Lessons Learnt from Crawling 1000+ Websites
charlesmeaden
PRO
1
1.1k
Transcript
An Auto-Encoder Matching Model for Learning Utterance-Level Semantic Dependency in
Dialogue Generation 1 1
• ',"! %,(* + • $
Seq2Seq • ',& )# 2
!" # = − log ) * +
+; #) !. / = 1 2 2 ℎ − 4 !5 6 = − log ) * 7 7; 6) !8 #, /, 6 = − log )(7|+; #, /, 6) 3
Auto-Encoder Encoder !" # = − log ) *
+ +; #) !. / = 1 2 2 ℎ − 4 !5 6 = − log ) * 7 7; 6) !8 #, /, 6 = − log )(7|+; #, /, 6) 4
Mapping Module !" # = − log ) *
+ +; #) !. / = 1 2 2 ℎ − 4 !5 6 = − log ) * 7 7; 6) !8 #, /, 6 = − log )(7|+; #, /, 6) 5
Auto-Encoder Decoder !" # = − log ) *
+ +; #) !. / = 1 2 2 ℎ − 4 !5 6 = − log ) * 7 7; 6) !8 #, /, 6 = − log )(7|+; #, /, 6) 6
End-to-End train loss !" # = − log )
* + +; #) !. / = 1 2 2 ℎ − 4 !5 6 = − log ) * 7 7; 6) !8 #, /, 6 = − log )(7|+; #, /, 6) 7
• Daily Dialogue Corpus 36.3k pairs 11.1k
pairs 11.1k pairs • BLEU-(1, 2, 3, 4), Distinct-(1, 2, 3), Human evaluation • Seq2Seq, Seq2Seq + Attention 8
• • 9
10 • AEM •
10
• *.% # Seq2Seq& • Seq2Seq+ • ( $,!
• ( Fluency, Coherence ' " • Seq2Seq -) 11