Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
An Auto-Encoder Matching Model for Learning Utt...
Search
onizuka laboratory
December 18, 2018
Research
0
55
An Auto-Encoder Matching Model for Learning Utterance-Level Semantic Dependency in Dialogue Generation
弊研究室で行なったEMNLP2018読み会の発表資料です。
onizuka laboratory
December 18, 2018
Tweet
Share
More Decks by onizuka laboratory
See All by onizuka laboratory
Phrase-Based & Neural Unsupervised Machine Translation
onilab
0
110
Tell-and-Answer: Towards Explainable Visual Question Answering using Attributes and Captions
onilab
0
71
Card-660: A Reliable Evaluation Framework for Rare Word Representation Models
onilab
0
33
A Word-Complexity Lexicon and A Neural Readability Ranking Model for Lexical Simplification
onilab
0
120
Integrating Transformer and Paraphrase Rules for Sentence Simplification
onilab
0
59
Generating More Interesting Responses in Neural Conversation Models with Distributional Constraints
onilab
0
100
Modeling Multi-turn Conversation with Deep Utterance Aggregation
onilab
0
95
Learning Semantic Sentence Embeddings using Pair-wise Discriminator
onilab
0
120
SGM: Sequence Generation Model for Multi-Label Classification
onilab
0
77
Other Decks in Research
See All in Research
Delta Airlines® Customer Care in the U.S.: How to Reach Them Now
bookingcomcustomersupportusa
0
110
20250605_新交通システム推進議連_熊本都市圏「車1割削減、渋滞半減、公共交通2倍」から考える地方都市交通政策
trafficbrain
0
770
利用シーンを意識した推薦システム〜SpotifyとAmazonの事例から〜
kuri8ive
1
250
cvpaper.challenge 10年の軌跡 / cvpaper.challenge a decade-long journey
gatheluck
3
310
なめらかなシステムと運用維持の終わらぬ未来 / dicomo2025_coherently_fittable_system
monochromegane
0
2.8k
国際論文を出そう!ICRA / IROS / RA-L への論文投稿の心構えとノウハウ / RSJ2025 Luncheon Seminar
koide3
6
4.6k
【輪講資料】Moshi: a speech-text foundation model for real-time dialogue
hpprc
3
670
最適決定木を用いた処方的価格最適化
mickey_kubo
4
1.9k
論文紹介:Not All Tokens Are What You Need for Pretraining
kosuken
0
170
AIによる画像認識技術の進化 -25年の技術変遷を振り返る-
hf149
7
4k
ストレス計測方法の確立に向けたマルチモーダルデータの活用
yurikomium
0
1.5k
診断前の病歴テキストを対象としたLLMによるエンティティリンキング精度検証
hagino3000
1
130
Featured
See All Featured
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
23
1.4k
VelocityConf: Rendering Performance Case Studies
addyosmani
332
24k
Optimizing for Happiness
mojombo
379
70k
Building an army of robots
kneath
306
46k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
31
2.2k
The Invisible Side of Design
smashingmag
301
51k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
26
3k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
358
30k
The Language of Interfaces
destraynor
161
25k
StorybookのUI Testing Handbookを読んだ
zakiyama
31
6.1k
Balancing Empowerment & Direction
lara
3
620
Bash Introduction
62gerente
615
210k
Transcript
An Auto-Encoder Matching Model for Learning Utterance-Level Semantic Dependency in
Dialogue Generation 1 1
• ',"! %,(* + • $
Seq2Seq • ',& )# 2
!" # = − log ) * +
+; #) !. / = 1 2 2 ℎ − 4 !5 6 = − log ) * 7 7; 6) !8 #, /, 6 = − log )(7|+; #, /, 6) 3
Auto-Encoder Encoder !" # = − log ) *
+ +; #) !. / = 1 2 2 ℎ − 4 !5 6 = − log ) * 7 7; 6) !8 #, /, 6 = − log )(7|+; #, /, 6) 4
Mapping Module !" # = − log ) *
+ +; #) !. / = 1 2 2 ℎ − 4 !5 6 = − log ) * 7 7; 6) !8 #, /, 6 = − log )(7|+; #, /, 6) 5
Auto-Encoder Decoder !" # = − log ) *
+ +; #) !. / = 1 2 2 ℎ − 4 !5 6 = − log ) * 7 7; 6) !8 #, /, 6 = − log )(7|+; #, /, 6) 6
End-to-End train loss !" # = − log )
* + +; #) !. / = 1 2 2 ℎ − 4 !5 6 = − log ) * 7 7; 6) !8 #, /, 6 = − log )(7|+; #, /, 6) 7
• Daily Dialogue Corpus 36.3k pairs 11.1k
pairs 11.1k pairs • BLEU-(1, 2, 3, 4), Distinct-(1, 2, 3), Human evaluation • Seq2Seq, Seq2Seq + Attention 8
• • 9
10 • AEM •
10
• *.% # Seq2Seq& • Seq2Seq+ • ( $,!
• ( Fluency, Coherence ' " • Seq2Seq -) 11