Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
An Auto-Encoder Matching Model for Learning Utt...
Search
onizuka laboratory
December 18, 2018
Research
0
57
An Auto-Encoder Matching Model for Learning Utterance-Level Semantic Dependency in Dialogue Generation
弊研究室で行なったEMNLP2018読み会の発表資料です。
onizuka laboratory
December 18, 2018
Tweet
Share
More Decks by onizuka laboratory
See All by onizuka laboratory
Phrase-Based & Neural Unsupervised Machine Translation
onilab
0
120
Tell-and-Answer: Towards Explainable Visual Question Answering using Attributes and Captions
onilab
0
72
Card-660: A Reliable Evaluation Framework for Rare Word Representation Models
onilab
0
36
A Word-Complexity Lexicon and A Neural Readability Ranking Model for Lexical Simplification
onilab
0
130
Integrating Transformer and Paraphrase Rules for Sentence Simplification
onilab
0
61
Generating More Interesting Responses in Neural Conversation Models with Distributional Constraints
onilab
0
100
Modeling Multi-turn Conversation with Deep Utterance Aggregation
onilab
0
98
Learning Semantic Sentence Embeddings using Pair-wise Discriminator
onilab
0
120
SGM: Sequence Generation Model for Multi-Label Classification
onilab
0
80
Other Decks in Research
See All in Research
20250725-bet-ai-day
cipepser
3
550
能動適応的実験計画
masakat0
2
1.1k
病院向け生成AIプロダクト開発の実践と課題
hagino3000
0
440
[論文紹介] Intuitive Fine-Tuning
ryou0634
0
150
VectorLLM: Human-like Extraction of Structured Building Contours via Multimodal LLMs
satai
4
500
競合や要望に流されない─B2B SaaSでミニマム要件を決めるリアルな取り組み / Don't be swayed by competitors or requests - A real effort to determine minimum requirements for B2B SaaS
kaminashi
0
210
snlp2025_prevent_llm_spikes
takase
0
420
"主観で終わらせない"定性データ活用 ― プロダクトディスカバリーを加速させるインサイトマネジメント / Utilizing qualitative data that "doesn't end with subjectivity" - Insight management that accelerates product discovery
kaminashi
15
15k
令和最新技術で伝統掲示板を再構築: HonoX で作る型安全なスレッドフロート型掲示板 / かろっく@calloc134 - Hono Conference 2025
calloc134
0
440
離散凸解析に基づく予測付き離散最適化手法 (IBIS '25)
taihei_oki
PRO
1
620
Satellites Reveal Mobility: A Commuting Origin-destination Flow Generator for Global Cities
satai
3
190
データサイエンティストをめぐる環境の違い2025年版〈一般ビジネスパーソン調査の国際比較〉
datascientistsociety
PRO
0
260
Featured
See All Featured
Building an army of robots
kneath
306
46k
Into the Great Unknown - MozCon
thekraken
40
2.2k
The Hidden Cost of Media on the Web [PixelPalooza 2025]
tammyeverts
1
100
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
31
2.6k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
12
1.3k
Optimizing for Happiness
mojombo
379
70k
KATA
mclloyd
PRO
32
15k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
249
1.3M
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
194
17k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
359
30k
Code Review Best Practice
trishagee
74
19k
Become a Pro
speakerdeck
PRO
31
5.7k
Transcript
An Auto-Encoder Matching Model for Learning Utterance-Level Semantic Dependency in
Dialogue Generation 1 1
• ',"! %,(* + • $
Seq2Seq • ',& )# 2
!" # = − log ) * +
+; #) !. / = 1 2 2 ℎ − 4 !5 6 = − log ) * 7 7; 6) !8 #, /, 6 = − log )(7|+; #, /, 6) 3
Auto-Encoder Encoder !" # = − log ) *
+ +; #) !. / = 1 2 2 ℎ − 4 !5 6 = − log ) * 7 7; 6) !8 #, /, 6 = − log )(7|+; #, /, 6) 4
Mapping Module !" # = − log ) *
+ +; #) !. / = 1 2 2 ℎ − 4 !5 6 = − log ) * 7 7; 6) !8 #, /, 6 = − log )(7|+; #, /, 6) 5
Auto-Encoder Decoder !" # = − log ) *
+ +; #) !. / = 1 2 2 ℎ − 4 !5 6 = − log ) * 7 7; 6) !8 #, /, 6 = − log )(7|+; #, /, 6) 6
End-to-End train loss !" # = − log )
* + +; #) !. / = 1 2 2 ℎ − 4 !5 6 = − log ) * 7 7; 6) !8 #, /, 6 = − log )(7|+; #, /, 6) 7
• Daily Dialogue Corpus 36.3k pairs 11.1k
pairs 11.1k pairs • BLEU-(1, 2, 3, 4), Distinct-(1, 2, 3), Human evaluation • Seq2Seq, Seq2Seq + Attention 8
• • 9
10 • AEM •
10
• *.% # Seq2Seq& • Seq2Seq+ • ( $,!
• ( Fluency, Coherence ' " • Seq2Seq -) 11