Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
An Auto-Encoder Matching Model for Learning Utt...
Search
onizuka laboratory
December 18, 2018
Research
0
57
An Auto-Encoder Matching Model for Learning Utterance-Level Semantic Dependency in Dialogue Generation
弊研究室で行なったEMNLP2018読み会の発表資料です。
onizuka laboratory
December 18, 2018
Tweet
Share
More Decks by onizuka laboratory
See All by onizuka laboratory
Phrase-Based & Neural Unsupervised Machine Translation
onilab
0
120
Tell-and-Answer: Towards Explainable Visual Question Answering using Attributes and Captions
onilab
0
72
Card-660: A Reliable Evaluation Framework for Rare Word Representation Models
onilab
0
37
A Word-Complexity Lexicon and A Neural Readability Ranking Model for Lexical Simplification
onilab
0
130
Integrating Transformer and Paraphrase Rules for Sentence Simplification
onilab
0
61
Generating More Interesting Responses in Neural Conversation Models with Distributional Constraints
onilab
0
100
Modeling Multi-turn Conversation with Deep Utterance Aggregation
onilab
0
98
Learning Semantic Sentence Embeddings using Pair-wise Discriminator
onilab
0
120
SGM: Sequence Generation Model for Multi-Label Classification
onilab
0
80
Other Decks in Research
See All in Research
20年前に50代だった人たちの今
hysmrk
0
140
Community Driveプロジェクト(CDPJ)の中間報告
smartfukushilab1
0
170
AI Agentの精度改善に見るML開発との共通点 / commonalities in accuracy improvements in agentic era
shimacos
4
1.3k
Multi-Agent Large Language Models for Code Intelligence: Opportunities, Challenges, and Research Directions
fatemeh_fard
0
120
地域丸ごとデイサービス「Go トレ」の紹介
smartfukushilab1
0
920
病院向け生成AIプロダクト開発の実践と課題
hagino3000
0
530
AIスーパーコンピュータにおけるLLM学習処理性能の計測と可観測性 / AI Supercomputer LLM Benchmarking and Observability
yuukit
1
650
離散凸解析に基づく予測付き離散最適化手法 (IBIS '25)
taihei_oki
PRO
1
690
それ、チームの改善になってますか?ー「チームとは?」から始めた組織の実験ー
hirakawa51
0
660
svc-hook: hooking system calls on ARM64 by binary rewriting
retrage
1
100
[IBIS 2025] 深層基盤モデルのための強化学習驚きから理論にもとづく納得へ
akifumi_wachi
19
9.6k
A History of Approximate Nearest Neighbor Search from an Applications Perspective
matsui_528
1
160
Featured
See All Featured
Amusing Abliteration
ianozsvald
0
100
Optimizing for Happiness
mojombo
379
71k
Designing for Performance
lara
610
70k
Highjacked: Video Game Concept Design
rkendrick25
PRO
1
290
Six Lessons from altMBA
skipperchong
29
4.2k
Jess Joyce - The Pitfalls of Following Frameworks
techseoconnect
PRO
1
67
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
31
3.1k
A Soul's Torment
seathinner
5
2.3k
Mind Mapping
helmedeiros
PRO
0
89
The agentic SEO stack - context over prompts
schlessera
0
640
Embracing the Ebb and Flow
colly
88
5k
Discover your Explorer Soul
emna__ayadi
2
1.1k
Transcript
An Auto-Encoder Matching Model for Learning Utterance-Level Semantic Dependency in
Dialogue Generation 1 1
• ',"! %,(* + • $
Seq2Seq • ',& )# 2
!" # = − log ) * +
+; #) !. / = 1 2 2 ℎ − 4 !5 6 = − log ) * 7 7; 6) !8 #, /, 6 = − log )(7|+; #, /, 6) 3
Auto-Encoder Encoder !" # = − log ) *
+ +; #) !. / = 1 2 2 ℎ − 4 !5 6 = − log ) * 7 7; 6) !8 #, /, 6 = − log )(7|+; #, /, 6) 4
Mapping Module !" # = − log ) *
+ +; #) !. / = 1 2 2 ℎ − 4 !5 6 = − log ) * 7 7; 6) !8 #, /, 6 = − log )(7|+; #, /, 6) 5
Auto-Encoder Decoder !" # = − log ) *
+ +; #) !. / = 1 2 2 ℎ − 4 !5 6 = − log ) * 7 7; 6) !8 #, /, 6 = − log )(7|+; #, /, 6) 6
End-to-End train loss !" # = − log )
* + +; #) !. / = 1 2 2 ℎ − 4 !5 6 = − log ) * 7 7; 6) !8 #, /, 6 = − log )(7|+; #, /, 6) 7
• Daily Dialogue Corpus 36.3k pairs 11.1k
pairs 11.1k pairs • BLEU-(1, 2, 3, 4), Distinct-(1, 2, 3), Human evaluation • Seq2Seq, Seq2Seq + Attention 8
• • 9
10 • AEM •
10
• *.% # Seq2Seq& • Seq2Seq+ • ( $,!
• ( Fluency, Coherence ' " • Seq2Seq -) 11