Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
An Auto-Encoder Matching Model for Learning Utt...
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
onizuka laboratory
December 18, 2018
Research
0
57
An Auto-Encoder Matching Model for Learning Utterance-Level Semantic Dependency in Dialogue Generation
弊研究室で行なったEMNLP2018読み会の発表資料です。
onizuka laboratory
December 18, 2018
Tweet
Share
More Decks by onizuka laboratory
See All by onizuka laboratory
Phrase-Based & Neural Unsupervised Machine Translation
onilab
0
120
Tell-and-Answer: Towards Explainable Visual Question Answering using Attributes and Captions
onilab
0
72
Card-660: A Reliable Evaluation Framework for Rare Word Representation Models
onilab
0
37
A Word-Complexity Lexicon and A Neural Readability Ranking Model for Lexical Simplification
onilab
0
130
Integrating Transformer and Paraphrase Rules for Sentence Simplification
onilab
0
61
Generating More Interesting Responses in Neural Conversation Models with Distributional Constraints
onilab
0
100
Modeling Multi-turn Conversation with Deep Utterance Aggregation
onilab
0
98
Learning Semantic Sentence Embeddings using Pair-wise Discriminator
onilab
0
120
SGM: Sequence Generation Model for Multi-Label Classification
onilab
0
80
Other Decks in Research
See All in Research
SREはサイバネティクスの夢をみるか? / Do SREs Dream of Cybernetics?
yuukit
3
380
都市交通マスタープランとその後への期待@熊本商工会議所・熊本経済同友会
trafficbrain
0
120
自動運転におけるデータ駆動型AIに対する安全性の考え方 / Safety Engineering for Data-Driven AI in Autonomous Driving Systems
ishikawafyu
0
130
地域丸ごとデイサービス「Go トレ」の紹介
smartfukushilab1
0
920
Can AI Generated Ambrotype Chain the Aura of Alternative Process? In SIGGRAPH Asia 2024 Art Papers
toremolo72
0
140
LLM-jp-3 and beyond: Training Large Language Models
odashi
1
760
ブレグマン距離最小化に基づくリース表現量推定:バイアス除去学習の統一理論
masakat0
0
140
[Devfest Incheon 2025] 모두를 위한 친절한 언어모델(LLM) 학습 가이드
beomi
2
1.4k
Tiaccoon: Unified Access Control with Multiple Transports in Container Networks
hiroyaonoe
0
620
AIスーパーコンピュータにおけるLLM学習処理性能の計測と可観測性 / AI Supercomputer LLM Benchmarking and Observability
yuukit
1
650
競合や要望に流されない─B2B SaaSでミニマム要件を決めるリアルな取り組み / Don't be swayed by competitors or requests - A real effort to determine minimum requirements for B2B SaaS
kaminashi
0
740
HoliTracer:Holistic Vectorization of Geographic Objects from Large-Size Remote Sensing Imagery
satai
3
620
Featured
See All Featured
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
31
9.9k
How to Ace a Technical Interview
jacobian
281
24k
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
4.2k
Primal Persuasion: How to Engage the Brain for Learning That Lasts
tmiket
0
260
ラッコキーワード サービス紹介資料
rakko
1
2.3M
The World Runs on Bad Software
bkeepers
PRO
72
12k
Crafting Experiences
bethany
1
49
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
54k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
666
130k
Navigating the moral maze — ethical principles for Al-driven product design
skipperchong
2
250
AI Search: Where Are We & What Can We Do About It?
aleyda
0
7k
Bioeconomy Workshop: Dr. Julius Ecuru, Opportunities for a Bioeconomy in West Africa
akademiya2063
PRO
1
55
Transcript
An Auto-Encoder Matching Model for Learning Utterance-Level Semantic Dependency in
Dialogue Generation 1 1
• ',"! %,(* + • $
Seq2Seq • ',& )# 2
!" # = − log ) * +
+; #) !. / = 1 2 2 ℎ − 4 !5 6 = − log ) * 7 7; 6) !8 #, /, 6 = − log )(7|+; #, /, 6) 3
Auto-Encoder Encoder !" # = − log ) *
+ +; #) !. / = 1 2 2 ℎ − 4 !5 6 = − log ) * 7 7; 6) !8 #, /, 6 = − log )(7|+; #, /, 6) 4
Mapping Module !" # = − log ) *
+ +; #) !. / = 1 2 2 ℎ − 4 !5 6 = − log ) * 7 7; 6) !8 #, /, 6 = − log )(7|+; #, /, 6) 5
Auto-Encoder Decoder !" # = − log ) *
+ +; #) !. / = 1 2 2 ℎ − 4 !5 6 = − log ) * 7 7; 6) !8 #, /, 6 = − log )(7|+; #, /, 6) 6
End-to-End train loss !" # = − log )
* + +; #) !. / = 1 2 2 ℎ − 4 !5 6 = − log ) * 7 7; 6) !8 #, /, 6 = − log )(7|+; #, /, 6) 7
• Daily Dialogue Corpus 36.3k pairs 11.1k
pairs 11.1k pairs • BLEU-(1, 2, 3, 4), Distinct-(1, 2, 3), Human evaluation • Seq2Seq, Seq2Seq + Attention 8
• • 9
10 • AEM •
10
• *.% # Seq2Seq& • Seq2Seq+ • ( $,!
• ( Fluency, Coherence ' " • Seq2Seq -) 11