Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
A Word-Complexity Lexicon and A Neural Readabil...
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
onizuka laboratory
December 18, 2018
Research
0
130
A Word-Complexity Lexicon and A Neural Readability Ranking Model for Lexical Simplification
弊研究室で行なったEMNLP2018読み会の発表資料です。
onizuka laboratory
December 18, 2018
Tweet
Share
More Decks by onizuka laboratory
See All by onizuka laboratory
Phrase-Based & Neural Unsupervised Machine Translation
onilab
0
120
Tell-and-Answer: Towards Explainable Visual Question Answering using Attributes and Captions
onilab
0
72
Card-660: A Reliable Evaluation Framework for Rare Word Representation Models
onilab
0
37
Integrating Transformer and Paraphrase Rules for Sentence Simplification
onilab
0
61
An Auto-Encoder Matching Model for Learning Utterance-Level Semantic Dependency in Dialogue Generation
onilab
0
57
Generating More Interesting Responses in Neural Conversation Models with Distributional Constraints
onilab
0
100
Modeling Multi-turn Conversation with Deep Utterance Aggregation
onilab
0
98
Learning Semantic Sentence Embeddings using Pair-wise Discriminator
onilab
0
120
SGM: Sequence Generation Model for Multi-Label Classification
onilab
0
80
Other Decks in Research
See All in Research
J-RAGBench: 日本語RAGにおける Generator評価ベンチマークの構築
koki_itai
0
1.3k
さまざまなAgent FrameworkとAIエージェントの評価
ymd65536
1
420
20251023_くまもと21の会例会_「車1割削減、渋滞半減、公共交通2倍」をめざして.pdf
trafficbrain
0
180
自動運転におけるデータ駆動型AIに対する安全性の考え方 / Safety Engineering for Data-Driven AI in Autonomous Driving Systems
ishikawafyu
0
130
AIスパコン「さくらONE」の オブザーバビリティ / Observability for AI Supercomputer SAKURAONE
yuukit
2
1.2k
ブレグマン距離最小化に基づくリース表現量推定:バイアス除去学習の統一理論
masakat0
0
140
"主観で終わらせない"定性データ活用 ― プロダクトディスカバリーを加速させるインサイトマネジメント / Utilizing qualitative data that "doesn't end with subjectivity" - Insight management that accelerates product discovery
kaminashi
15
20k
データサイエンティストの業務変化
datascientistsociety
PRO
0
220
Satellites Reveal Mobility: A Commuting Origin-destination Flow Generator for Global Cities
satai
3
510
空間音響処理における物理法則に基づく機械学習
skoyamalab
0
190
地域丸ごとデイサービス「Go トレ」の紹介
smartfukushilab1
0
930
世界モデルにおける分布外データ対応の方法論
koukyo1994
7
1.5k
Featured
See All Featured
Navigating Team Friction
lara
192
16k
Rails Girls Zürich Keynote
gr2m
96
14k
The Illustrated Children's Guide to Kubernetes
chrisshort
51
51k
How to Grow Your eCommerce with AI & Automation
katarinadahlin
PRO
1
110
The SEO Collaboration Effect
kristinabergwall1
0
350
Claude Code のすすめ
schroneko
67
210k
Embracing the Ebb and Flow
colly
88
5k
svc-hook: hooking system calls on ARM64 by binary rewriting
retrage
1
100
Balancing Empowerment & Direction
lara
5
900
Stewardship and Sustainability of Urban and Community Forests
pwiseman
0
110
Have SEOs Ruined the Internet? - User Awareness of SEO in 2025
akashhashmi
0
270
Code Review Best Practice
trishagee
74
20k
Transcript
EMNLP A Word-Complexity Lexicon and A Neural Readability Ranking Model
2018/12/18 M1
• 2 • 15000 • SimplePPDB++
2
3 Complex Sentence The cat perched on the mat. Substitution
Generation perched : rested, sat Substitution Ranking #1 : sat, #2 : rested Complex Word Identification The cat perched on the mat. Simplification Sentence The cat sat on the mat.
$,52(% *60#94 -):3 • 60 • $;! '
. • foolishness7 vs folly1 • 60 foolishness • Google Ngram Corpus foolishness/;! • PPDB"&2272 • 21%60 8160 • 14%/;! 760 4 +2
- • Google Ngram Corpus • Wo 15000 • 11
L • 6 5 6 • e p bug n d • C Wo c • 1000 i 2-2.5h • 1 5-7 L • m l 5
- C 2 • 3% • L 0.55 → 0.64
• • ≦0.5 47% • ≦1.0 78% • ≦1.5 93% 6
2 7
• ,/+*23.0! •
SemEval2012$! "% • )-2*15Candidates • $! "% • %'&(30Target300Candidate • #% 171Target1710Candidate 8 TEXT When you think about it, that’s pretty terrible. Target terrible Candidates bad, awful, deplorable
9 P@1 1 S all binning WC R 15000
• PPDB P Ranking model • PPDB • • •
+ + + • PPDB D • 10B S 10
+ 11 SimplePPDB++
Target Candidate • 100 Target Candidate • 2 • Candidate
G • SimplePPDB++ 12
13
• n Target • PPs Candidate • MAP Candidate • P@1 Top1
I • SemEval2016 CWIG3G2 • C WC 14
15
• 2'"#( & • SOTA% • 15000'"#(
• !*$ CWI) • SimplePPDB++ 16