Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
A Word-Complexity Lexicon and A Neural Readabil...
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
onizuka laboratory
December 18, 2018
Research
0
130
A Word-Complexity Lexicon and A Neural Readability Ranking Model for Lexical Simplification
弊研究室で行なったEMNLP2018読み会の発表資料です。
onizuka laboratory
December 18, 2018
Tweet
Share
More Decks by onizuka laboratory
See All by onizuka laboratory
Phrase-Based & Neural Unsupervised Machine Translation
onilab
0
120
Tell-and-Answer: Towards Explainable Visual Question Answering using Attributes and Captions
onilab
0
72
Card-660: A Reliable Evaluation Framework for Rare Word Representation Models
onilab
0
37
Integrating Transformer and Paraphrase Rules for Sentence Simplification
onilab
0
61
An Auto-Encoder Matching Model for Learning Utterance-Level Semantic Dependency in Dialogue Generation
onilab
0
57
Generating More Interesting Responses in Neural Conversation Models with Distributional Constraints
onilab
0
100
Modeling Multi-turn Conversation with Deep Utterance Aggregation
onilab
0
98
Learning Semantic Sentence Embeddings using Pair-wise Discriminator
onilab
0
120
SGM: Sequence Generation Model for Multi-Label Classification
onilab
0
80
Other Decks in Research
See All in Research
2025-11-21-DA-10th-satellite
yegusa
0
110
CoRL2025速報
rpc
4
4.2k
令和最新技術で伝統掲示板を再構築: HonoX で作る型安全なスレッドフロート型掲示板 / かろっく@calloc134 - Hono Conference 2025
calloc134
0
550
【NICOGRAPH2025】Photographic Conviviality: ボディペイント・ワークショップによる 同時的かつ共生的な写真体験
toremolo72
0
170
Akamaiのキャッシュ効率を支えるAdaptSizeについての論文を読んでみた
bootjp
1
450
さまざまなAgent FrameworkとAIエージェントの評価
ymd65536
1
420
病院向け生成AIプロダクト開発の実践と課題
hagino3000
0
530
LiDARセキュリティ最前線(2025年)
kentaroy47
0
140
湯村研究室の紹介2025 / yumulab2025
yumulab
0
300
それ、チームの改善になってますか?ー「チームとは?」から始めた組織の実験ー
hirakawa51
0
670
視覚から身体性を持つAIへ: 巧緻な動作の3次元理解
tkhkaeio
0
190
POI: Proof of Identity
katsyoshi
0
140
Featured
See All Featured
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
27k
How to optimise 3,500 product descriptions for ecommerce in one day using ChatGPT
katarinadahlin
PRO
0
3.4k
Conquering PDFs: document understanding beyond plain text
inesmontani
PRO
4
2.3k
Jamie Indigo - Trashchat’s Guide to Black Boxes: Technical SEO Tactics for LLMs
techseoconnect
PRO
0
64
The Spectacular Lies of Maps
axbom
PRO
1
530
The Power of CSS Pseudo Elements
geoffreycrofte
80
6.2k
The AI Revolution Will Not Be Monopolized: How open-source beats economies of scale, even for LLMs
inesmontani
PRO
3
3k
DBのスキルで生き残る技術 - AI時代におけるテーブル設計の勘所
soudai
PRO
62
50k
Digital Projects Gone Horribly Wrong (And the UX Pros Who Still Save the Day) - Dean Schuster
uxyall
0
390
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
31
2.7k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
21
1.4k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
55
3.3k
Transcript
EMNLP A Word-Complexity Lexicon and A Neural Readability Ranking Model
2018/12/18 M1
• 2 • 15000 • SimplePPDB++
2
3 Complex Sentence The cat perched on the mat. Substitution
Generation perched : rested, sat Substitution Ranking #1 : sat, #2 : rested Complex Word Identification The cat perched on the mat. Simplification Sentence The cat sat on the mat.
$,52(% *60#94 -):3 • 60 • $;! '
. • foolishness7 vs folly1 • 60 foolishness • Google Ngram Corpus foolishness/;! • PPDB"&2272 • 21%60 8160 • 14%/;! 760 4 +2
- • Google Ngram Corpus • Wo 15000 • 11
L • 6 5 6 • e p bug n d • C Wo c • 1000 i 2-2.5h • 1 5-7 L • m l 5
- C 2 • 3% • L 0.55 → 0.64
• • ≦0.5 47% • ≦1.0 78% • ≦1.5 93% 6
2 7
• ,/+*23.0! •
SemEval2012$! "% • )-2*15Candidates • $! "% • %'&(30Target300Candidate • #% 171Target1710Candidate 8 TEXT When you think about it, that’s pretty terrible. Target terrible Candidates bad, awful, deplorable
9 P@1 1 S all binning WC R 15000
• PPDB P Ranking model • PPDB • • •
+ + + • PPDB D • 10B S 10
+ 11 SimplePPDB++
Target Candidate • 100 Target Candidate • 2 • Candidate
G • SimplePPDB++ 12
13
• n Target • PPs Candidate • MAP Candidate • P@1 Top1
I • SemEval2016 CWIG3G2 • C WC 14
15
• 2'"#( & • SOTA% • 15000'"#(
• !*$ CWI) • SimplePPDB++ 16