Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
A Word-Complexity Lexicon and A Neural Readabil...
Search
onizuka laboratory
December 18, 2018
Research
0
130
A Word-Complexity Lexicon and A Neural Readability Ranking Model for Lexical Simplification
弊研究室で行なったEMNLP2018読み会の発表資料です。
onizuka laboratory
December 18, 2018
Tweet
Share
More Decks by onizuka laboratory
See All by onizuka laboratory
Phrase-Based & Neural Unsupervised Machine Translation
onilab
0
120
Tell-and-Answer: Towards Explainable Visual Question Answering using Attributes and Captions
onilab
0
72
Card-660: A Reliable Evaluation Framework for Rare Word Representation Models
onilab
0
37
Integrating Transformer and Paraphrase Rules for Sentence Simplification
onilab
0
61
An Auto-Encoder Matching Model for Learning Utterance-Level Semantic Dependency in Dialogue Generation
onilab
0
57
Generating More Interesting Responses in Neural Conversation Models with Distributional Constraints
onilab
0
100
Modeling Multi-turn Conversation with Deep Utterance Aggregation
onilab
0
98
Learning Semantic Sentence Embeddings using Pair-wise Discriminator
onilab
0
120
SGM: Sequence Generation Model for Multi-Label Classification
onilab
0
80
Other Decks in Research
See All in Research
ウェブ・ソーシャルメディア論文読み会 第36回: The Stepwise Deception: Simulating the Evolution from True News to Fake News with LLM Agents (EMNLP, 2025)
hkefka385
0
160
When Learned Data Structures Meet Computer Vision
matsui_528
1
2.9k
AIスパコン「さくらONE」の オブザーバビリティ / Observability for AI Supercomputer SAKURAONE
yuukit
2
1.2k
J-RAGBench: 日本語RAGにおける Generator評価ベンチマークの構築
koki_itai
0
1.3k
生成的情報検索時代におけるAI利用と認知バイアス
trycycle
PRO
0
300
その推薦システムの評価指標、ユーザーの感覚とズレてるかも
kuri8ive
1
320
競合や要望に流されない─B2B SaaSでミニマム要件を決めるリアルな取り組み / Don't be swayed by competitors or requests - A real effort to determine minimum requirements for B2B SaaS
kaminashi
0
760
第66回コンピュータビジョン勉強会@関東 Epona: Autoregressive Diffusion World Model for Autonomous Driving
kentosasaki
0
350
[IBIS 2025] 深層基盤モデルのための強化学習驚きから理論にもとづく納得へ
akifumi_wachi
19
9.6k
【NICOGRAPH2025】Photographic Conviviality: ボディペイント・ワークショップによる 同時的かつ共生的な写真体験
toremolo72
0
170
Attaques quantiques sur Bitcoin : comment se protéger ?
rlifchitz
0
140
Thirty Years of Progress in Speech Synthesis: A Personal Perspective on the Past, Present, and Future
ktokuda
0
170
Featured
See All Featured
Fashionably flexible responsive web design (full day workshop)
malarkey
408
66k
The Cost Of JavaScript in 2023
addyosmani
55
9.5k
What's in a price? How to price your products and services
michaelherold
247
13k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
27k
Claude Code のすすめ
schroneko
67
210k
Public Speaking Without Barfing On Your Shoes - THAT 2023
reverentgeek
1
310
Docker and Python
trallard
47
3.7k
A designer walks into a library…
pauljervisheath
210
24k
Sam Torres - BigQuery for SEOs
techseoconnect
PRO
0
190
The Director’s Chair: Orchestrating AI for Truly Effective Learning
tmiket
1
98
Prompt Engineering for Job Search
mfonobong
0
160
Learning to Love Humans: Emotional Interface Design
aarron
275
41k
Transcript
EMNLP A Word-Complexity Lexicon and A Neural Readability Ranking Model
2018/12/18 M1
• 2 • 15000 • SimplePPDB++
2
3 Complex Sentence The cat perched on the mat. Substitution
Generation perched : rested, sat Substitution Ranking #1 : sat, #2 : rested Complex Word Identification The cat perched on the mat. Simplification Sentence The cat sat on the mat.
$,52(% *60#94 -):3 • 60 • $;! '
. • foolishness7 vs folly1 • 60 foolishness • Google Ngram Corpus foolishness/;! • PPDB"&2272 • 21%60 8160 • 14%/;! 760 4 +2
- • Google Ngram Corpus • Wo 15000 • 11
L • 6 5 6 • e p bug n d • C Wo c • 1000 i 2-2.5h • 1 5-7 L • m l 5
- C 2 • 3% • L 0.55 → 0.64
• • ≦0.5 47% • ≦1.0 78% • ≦1.5 93% 6
2 7
• ,/+*23.0! •
SemEval2012$! "% • )-2*15Candidates • $! "% • %'&(30Target300Candidate • #% 171Target1710Candidate 8 TEXT When you think about it, that’s pretty terrible. Target terrible Candidates bad, awful, deplorable
9 P@1 1 S all binning WC R 15000
• PPDB P Ranking model • PPDB • • •
+ + + • PPDB D • 10B S 10
+ 11 SimplePPDB++
Target Candidate • 100 Target Candidate • 2 • Candidate
G • SimplePPDB++ 12
13
• n Target • PPs Candidate • MAP Candidate • P@1 Top1
I • SemEval2016 CWIG3G2 • C WC 14
15
• 2'"#( & • SOTA% • 15000'"#(
• !*$ CWI) • SimplePPDB++ 16