Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Integrating Transformer and Paraphrase Rules fo...
Search
onizuka laboratory
December 18, 2018
Research
0
61
Integrating Transformer and Paraphrase Rules for Sentence Simplification
弊研究室で行なったEMNLP2018読み会の発表資料です。
onizuka laboratory
December 18, 2018
Tweet
Share
More Decks by onizuka laboratory
See All by onizuka laboratory
Phrase-Based & Neural Unsupervised Machine Translation
onilab
0
120
Tell-and-Answer: Towards Explainable Visual Question Answering using Attributes and Captions
onilab
0
72
Card-660: A Reliable Evaluation Framework for Rare Word Representation Models
onilab
0
37
A Word-Complexity Lexicon and A Neural Readability Ranking Model for Lexical Simplification
onilab
0
130
An Auto-Encoder Matching Model for Learning Utterance-Level Semantic Dependency in Dialogue Generation
onilab
0
57
Generating More Interesting Responses in Neural Conversation Models with Distributional Constraints
onilab
0
100
Modeling Multi-turn Conversation with Deep Utterance Aggregation
onilab
0
98
Learning Semantic Sentence Embeddings using Pair-wise Discriminator
onilab
0
120
SGM: Sequence Generation Model for Multi-Label Classification
onilab
0
80
Other Decks in Research
See All in Research
Grounding Text Complexity Control in Defined Linguistic Difficulty [Keynote@*SEM2025]
yukiar
0
110
20251023_くまもと21の会例会_「車1割削減、渋滞半減、公共交通2倍」をめざして.pdf
trafficbrain
0
180
Tiaccoon: Unified Access Control with Multiple Transports in Container Networks
hiroyaonoe
0
620
ドメイン知識がない領域での自然言語処理の始め方
hargon24
1
240
An Open and Reproducible Deep Research Agent for Long-Form Question Answering
ikuyamada
0
280
OWASP KansaiDAY 2025.09_文系OSINTハンズオン
owaspkansai
0
110
データサイエンティストの業務変化
datascientistsociety
PRO
0
220
第二言語習得研究における 明示的・暗示的知識の再検討:この分類は何に役に立つか,何に役に立たないか
tam07pb915
0
1.2k
ウェブ・ソーシャルメディア論文読み会 第36回: The Stepwise Deception: Simulating the Evolution from True News to Fake News with LLM Agents (EMNLP, 2025)
hkefka385
0
160
【SIGGRAPH Asia 2025】Lo-Fi Photograph with Lo-Fi Communication
toremolo72
0
120
LLMアプリケーションの透明性について
fufufukakaka
0
140
財務諸表監査のための逐次検定
masakat0
1
250
Featured
See All Featured
Why Our Code Smells
bkeepers
PRO
340
58k
Stewardship and Sustainability of Urban and Community Forests
pwiseman
0
110
We Are The Robots
honzajavorek
0
170
Lessons Learnt from Crawling 1000+ Websites
charlesmeaden
PRO
1
1.1k
Fantastic passwords and where to find them - at NoRuKo
philnash
52
3.6k
Side Projects
sachag
455
43k
Raft: Consensus for Rubyists
vanstee
141
7.3k
Building Adaptive Systems
keathley
44
2.9k
The innovator’s Mindset - Leading Through an Era of Exponential Change - McGill University 2025
jdejongh
PRO
1
93
How to Grow Your eCommerce with AI & Automation
katarinadahlin
PRO
1
110
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
10
1.1k
Optimizing for Happiness
mojombo
379
71k
Transcript
% 4BORJBOH ;IBP 3VJ .FOH %BRJOH)F 4BQUPOP "OEJ 1BSNBOUP
#BNCBOH 5SBOTGPSNFSBOE1BSBQISBTF 3VMFTGPS4FOUFODF4JNQMJGJDBUJPO #ݪ େو &./-1ಡΈձʢʣ
֓ཁ l 5SBOTGPSNFSϕʔεͷΞʔΩςΫνϟ l ฏқԽݴ͍͑σʔλϕʔε 4JNQMF11%#Λ ౷߹͢Δͭͷख๏ʢ%."44ͱ %$44ʣΛఏҊ l ౷߹ͷϝϦοτͭ
◦ จฏқԽͷ405"ΑΓ༏ΕΔ ◦ ϞσϧΑΓਖ਼֬ͳฏқԽنଇΛબ͠Α͏ͱ͢Δ l ιʔείʔυެ։ ◦ IUUQTHJUIVCDPN4BORJBOHUFYU@TJNQMJGJDBUJPO
5SBOTGPSNFS l ࠨ͕Τϯίʔμ l ӈ͕σίʔμ l ଛࣦؔ "#$ = −
log , ɺݱࡏͷϞσϧͷ શͯͷύϥϝʔλ
4JNQMF11%#ͷ౷߹ l ฏқԽͷχϡʔϥϧωοτϫʔΫϞσϧͰɺ ग़ݱස͕ߴ͍ฏқԽنଇΛ܇࿅͢Δ ◦ සنଇΛϊΠζͱଊ͑ͯ͠·͏ l /.5Ͱͷॳͷ֎෦ࣝ౷߹ ◦ ֎෦ࣝΛ౷߹͢Δ4.5ฏқԽྑ͍ʢ9VFUBM
ʣ l 4JNQMF11%# ◦ 1BWMJDL FUBM ◦ ສͷنଇ
ఏҊख๏̍ɿ%$44 l %FFQ$SJUJD4FOUFODF4JNQMJGJDBUJPO.PEFM l ଛࣦؔΛमਖ਼ ◦ සنଇͷݟམͱ͠Λආ͚ΔͨΊʹɺ୯ޠͷੜ֬Λ ฏқԽ֬Ͱ࠶ॏΈ͚ l ྫ
◦ ೖྗɿUIFSFDJQJFOU PGUIFLBUF HSFFOBXBZ NFEBM ◦ ग़ྗɿUIFXJOOFS PGUIFLBUF HSFFOBXBZ NFEBM l SFDJQJFOUΛग़͠ʹ͘͘ɺ XJOOFSΛग़͘͢͠ ͳΔΑ͏ଛࣦΛฦ͍ͨ͠
%$44ͷଛࣦؔ l 012# ฏқԽنଇͷॏΈɺ Ϟσϧύϥϝʔλɺ ೖྗจ l 304543 ಛఆͷ୯ޠͷΈʹɺ"#$ =
− log , ޠኮશମʹযΛ͍ͯͯΔ ◦ ͜ΕΒͷଛࣦؔΛަޓʹ࠷খԽ͢ΔΑ͏܇࿅
ఏҊख๏̎ɿ%."44 l %FFQ.FNPSZ"VHNFOUFE4FOUFODF 4JNQMJGJDBUJPO.PEFM l %$44සنଇ͕ແࢹ͞Ε͍͢ʢ͔͠͠ ܇࿅σʔλ͕ݶΒΕΔ߹ɺසنଇॏཁʣ l ֤نଇʹෳͷΩʔόϦϡʔ༻ϝϞϦΛ༻ҙ ◦
ΩʔϕΫτϧɺίϯςΩετϕΫτϧʢΤϯίʔμͷӅΕ ঢ়ଶͱͦͷ࣌ࠁͷσίʔμӅΕঢ়ଶͷՃॏฏۉʣ ◦ όϦϡʔϕΫτϧɺग़ྗϕΫτϧ
%."44
σʔληοτ l ܇࿅ 8JLJ-BSHF ;IBOHBOE-BQBUB ◦ จର l
ݕূͱධՁɺ5VSL 9VFUBM ◦ ೖྗจʹରͯ͠ਓखͷ̔ϦϑΝϨϯεʢˠྑ࣭ʣ ◦ ݕূ༻ จରɺධՁ༻ จର l ධՁ༻ʹ /FXTFMB ͏ ◦ จର
ධՁࢦඪ l ',(-ʢจͷฏқੑʣ ◦ จͷ͞ͱޠ͔Βܭࢉ l 4"3*ʢՃɾআɾอ࣋͞Ε͍ͯΔ͔ʣ ◦ ೖྗɺग़ྗɺϦϑΝϨϯεΛൺֱ l
نଇར༻ੑʢޠኮมͷਖ਼֬ੑʣ ◦ 4"3*ʹՃͱআΛผʑʹධՁ͢Δ͕ɺ߹Θ͍ͤͨ ◦ ೖྗͱϦϑΝϨϯεΛൺֱ͠ɺฏқԽنଇΛௐͯ ͦΕʹର͢Δ QSFDJTJPOɺSFDBMMɺ'Λܭࢉ
5SBOTGPSNFSͷ݁Ռʢ5VSLʣ l ',(-ͱ 4"3*͕ 3//-45.ΑΓ༏Ε͍ͯͨ l -)͕૿Ճ͢ΔͱείΞ্͕ͬͨ
5SBOTGPSNFSͷ݁Ռʢ5VSLʣ l -)͕૿Ճ͢Δͱ ',(-ͷԼ͕Δ l 4"3*ͷอ͚࣋ͩݮগɺաʹฏқԽͯ͠͠·͏
11%#౷߹ͷ݁Ռʢ5VSLʣ
11%#౷߹ͷ݁Ռʢ5VSLʣ
11%#౷߹ͷ݁Ռʢ5VSLʣ
11%#౷߹ͷ݁Ռʢ/FXTFMBʣ