Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
SGM: Sequence Generation Model for Multi-Label ...
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
onizuka laboratory
October 23, 2018
Research
0
80
SGM: Sequence Generation Model for Multi-Label Classification
弊研究室で行なったCOLING2018読み会の発表資料です。
onizuka laboratory
October 23, 2018
Tweet
Share
More Decks by onizuka laboratory
See All by onizuka laboratory
Phrase-Based & Neural Unsupervised Machine Translation
onilab
0
120
Tell-and-Answer: Towards Explainable Visual Question Answering using Attributes and Captions
onilab
0
72
Card-660: A Reliable Evaluation Framework for Rare Word Representation Models
onilab
0
37
A Word-Complexity Lexicon and A Neural Readability Ranking Model for Lexical Simplification
onilab
0
130
Integrating Transformer and Paraphrase Rules for Sentence Simplification
onilab
0
61
An Auto-Encoder Matching Model for Learning Utterance-Level Semantic Dependency in Dialogue Generation
onilab
0
57
Generating More Interesting Responses in Neural Conversation Models with Distributional Constraints
onilab
0
100
Modeling Multi-turn Conversation with Deep Utterance Aggregation
onilab
0
98
Learning Semantic Sentence Embeddings using Pair-wise Discriminator
onilab
0
120
Other Decks in Research
See All in Research
音声感情認識技術の進展と展望
nagase
0
460
一般道の交通量減少と速度低下についての全国分析と熊本市におけるケーススタディ(20251122 土木計画学研究発表会)
trafficbrain
0
160
視覚から身体性を持つAIへ: 巧緻な動作の3次元理解
tkhkaeio
0
190
Multi-Agent Large Language Models for Code Intelligence: Opportunities, Challenges, and Research Directions
fatemeh_fard
0
120
Sat2City:3D City Generation from A Single Satellite Image with Cascaded Latent Diffusion
satai
4
650
生成AI による論文執筆サポート・ワークショップ 論文執筆・推敲編 / Generative AI-Assisted Paper Writing Support Workshop: Drafting and Revision Edition
ks91
PRO
0
120
ウェブ・ソーシャルメディア論文読み会 第36回: The Stepwise Deception: Simulating the Evolution from True News to Fake News with LLM Agents (EMNLP, 2025)
hkefka385
0
150
AI Agentの精度改善に見るML開発との共通点 / commonalities in accuracy improvements in agentic era
shimacos
4
1.2k
存立危機事態の再検討
jimboken
0
240
データサイエンティストの業務変化
datascientistsociety
PRO
0
220
財務諸表監査のための逐次検定
masakat0
1
250
ペットのかわいい瞬間を撮影する オートシャッターAIアプリへの スマートラベリングの適用
mssmkmr
0
260
Featured
See All Featured
Beyond borders and beyond the search box: How to win the global "messy middle" with AI-driven SEO
davidcarrasco
1
51
State of Search Keynote: SEO is Dead Long Live SEO
ryanjones
0
120
How to Grow Your eCommerce with AI & Automation
katarinadahlin
PRO
0
110
First, design no harm
axbom
PRO
2
1.1k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
21
1.4k
4 Signs Your Business is Dying
shpigford
187
22k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
54k
Money Talks: Using Revenue to Get Sh*t Done
nikkihalliwell
0
150
Statistics for Hackers
jakevdp
799
230k
Deep Space Network (abreviated)
tonyrice
0
47
The untapped power of vector embeddings
frankvandijk
1
1.6k
Navigating Team Friction
lara
192
16k
Transcript
SGM: Sequence Generation Model for Multi-Label Classification 2018/10/23
1
1. 2. 3. 4. 5.
2
1. 2. 3. 4. 5.
3
#" n Multi Label Classification(MLC) (,$. >2 !'& -E n
?6: MLC-E>2Single Label Classification)+ Binary Relevancepairwise ranking loss; $ ! 6: n %0: !C<D3B) ! *574=/ n A3 seq2seq; sequence generation! 18%@-E?9 4
1. 2. 3. 4. 5.
5
6
7
Encoder n Bi-LSTM n $! # n
$! # "# !" = LSTM !"() , +" !" = LSTM !",) , +" !" = !" ; !" 8
9
Attention n * &2#,.+ * '% n Attention *(
3 4" /1 n !" , $" , %"&'-$( decoder!40) 10
Attention n ! n Decoder 11
12
Decoder n LSTM n %#" n !"#$% − 1
! n ( !"#$ % − 1 &! global embedding($) 13
Decoder n $(& !% )' n !" , !$
, %$ n &' !! " # &' ( = * −∞ ( . ) 0 12ℎ456.74 14
Global Embedding n #!* % ) (!* n
#!*-+ ".!* '&/ (exposure bias) n Global embedding $, n !" , !$ ∈ ℝ'×' 15
1. 2. 3. 4. 5.
16
"- n l Reuters Corpus Volume I (RCV1-V2) l
'800,000 ( l Arxiv Academic Paper Dataset (AAPD) l 55,840 )$ !* l &,#.+ % 17
n l Hamming-loss l! ", $ " =
& '()*+( ∑ -./ '()*+(0& 1("- ≠ $ "- ) l Micro-F1 n l Binary Relevance(BR) l Classifier Chains(CC) l Label Powerset(LP) l CNN l CNN-RNN 18
19
1. 2. 3. 4. 5.
20
n Global Embedding ! "#$%
& n 21
n sorting Ablation Experiment
n 22
! 23 n "( )
1. 2. 3. 4. 5.
24
9; n Multi-label classification"68&3/0 =5> ( n 1 decoder2<4
sequence generation 4%@7,)# /' n * ! +. $-:? 25