Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
SGM: Sequence Generation Model for Multi-Label ...
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
onizuka laboratory
October 23, 2018
Research
0
80
SGM: Sequence Generation Model for Multi-Label Classification
弊研究室で行なったCOLING2018読み会の発表資料です。
onizuka laboratory
October 23, 2018
Tweet
Share
More Decks by onizuka laboratory
See All by onizuka laboratory
Phrase-Based & Neural Unsupervised Machine Translation
onilab
0
120
Tell-and-Answer: Towards Explainable Visual Question Answering using Attributes and Captions
onilab
0
72
Card-660: A Reliable Evaluation Framework for Rare Word Representation Models
onilab
0
37
A Word-Complexity Lexicon and A Neural Readability Ranking Model for Lexical Simplification
onilab
0
130
Integrating Transformer and Paraphrase Rules for Sentence Simplification
onilab
0
61
An Auto-Encoder Matching Model for Learning Utterance-Level Semantic Dependency in Dialogue Generation
onilab
0
57
Generating More Interesting Responses in Neural Conversation Models with Distributional Constraints
onilab
0
100
Modeling Multi-turn Conversation with Deep Utterance Aggregation
onilab
0
98
Learning Semantic Sentence Embeddings using Pair-wise Discriminator
onilab
0
120
Other Decks in Research
See All in Research
超高速データサイエンス
matsui_528
2
380
2026-01-30-MandSL-textbook-jp-cos-lod
yegusa
0
170
それ、チームの改善になってますか?ー「チームとは?」から始めた組織の実験ー
hirakawa51
0
650
SREのためのテレメトリー技術の探究 / Telemetry for SRE
yuukit
13
3k
Thirty Years of Progress in Speech Synthesis: A Personal Perspective on the Past, Present, and Future
ktokuda
0
160
ロボット学習における大規模検索技術の展開と応用
denkiwakame
1
210
その推薦システムの評価指標、ユーザーの感覚とズレてるかも
kuri8ive
1
310
A History of Approximate Nearest Neighbor Search from an Applications Perspective
matsui_528
1
160
ACL読み会2025: Can Language Models Reason about Individualistic Human Values and Preferences?
yukizenimoto
0
120
教師あり学習と強化学習で作る 最強の数学特化LLM
analokmaus
2
890
第66回コンピュータビジョン勉強会@関東 Epona: Autoregressive Diffusion World Model for Autonomous Driving
kentosasaki
0
330
Satellites Reveal Mobility: A Commuting Origin-destination Flow Generator for Global Cities
satai
3
500
Featured
See All Featured
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
196
71k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
31
2.7k
Documentation Writing (for coders)
carmenintech
77
5.3k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
333
22k
Art, The Web, and Tiny UX
lynnandtonic
304
21k
Tell your own story through comics
letsgokoyo
1
810
GraphQLの誤解/rethinking-graphql
sonatard
74
11k
Digital Projects Gone Horribly Wrong (And the UX Pros Who Still Save the Day) - Dean Schuster
uxyall
0
350
Designing Powerful Visuals for Engaging Learning
tmiket
0
230
Color Theory Basics | Prateek | Gurzu
gurzu
0
200
Making Projects Easy
brettharned
120
6.6k
More Than Pixels: Becoming A User Experience Designer
marktimemedia
3
320
Transcript
SGM: Sequence Generation Model for Multi-Label Classification 2018/10/23
1
1. 2. 3. 4. 5.
2
1. 2. 3. 4. 5.
3
#" n Multi Label Classification(MLC) (,$. >2 !'& -E n
?6: MLC-E>2Single Label Classification)+ Binary Relevancepairwise ranking loss; $ ! 6: n %0: !C<D3B) ! *574=/ n A3 seq2seq; sequence generation! 18%@-E?9 4
1. 2. 3. 4. 5.
5
6
7
Encoder n Bi-LSTM n $! # n
$! # "# !" = LSTM !"() , +" !" = LSTM !",) , +" !" = !" ; !" 8
9
Attention n * &2#,.+ * '% n Attention *(
3 4" /1 n !" , $" , %"&'-$( decoder!40) 10
Attention n ! n Decoder 11
12
Decoder n LSTM n %#" n !"#$% − 1
! n ( !"#$ % − 1 &! global embedding($) 13
Decoder n $(& !% )' n !" , !$
, %$ n &' !! " # &' ( = * −∞ ( . ) 0 12ℎ456.74 14
Global Embedding n #!* % ) (!* n
#!*-+ ".!* '&/ (exposure bias) n Global embedding $, n !" , !$ ∈ ℝ'×' 15
1. 2. 3. 4. 5.
16
"- n l Reuters Corpus Volume I (RCV1-V2) l
'800,000 ( l Arxiv Academic Paper Dataset (AAPD) l 55,840 )$ !* l &,#.+ % 17
n l Hamming-loss l! ", $ " =
& '()*+( ∑ -./ '()*+(0& 1("- ≠ $ "- ) l Micro-F1 n l Binary Relevance(BR) l Classifier Chains(CC) l Label Powerset(LP) l CNN l CNN-RNN 18
19
1. 2. 3. 4. 5.
20
n Global Embedding ! "#$%
& n 21
n sorting Ablation Experiment
n 22
! 23 n "( )
1. 2. 3. 4. 5.
24
9; n Multi-label classification"68&3/0 =5> ( n 1 decoder2<4
sequence generation 4%@7,)# /' n * ! +. $-:? 25