Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
SGM: Sequence Generation Model for Multi-Label ...
Search
onizuka laboratory
October 23, 2018
Research
0
80
SGM: Sequence Generation Model for Multi-Label Classification
弊研究室で行なったCOLING2018読み会の発表資料です。
onizuka laboratory
October 23, 2018
Tweet
Share
More Decks by onizuka laboratory
See All by onizuka laboratory
Phrase-Based & Neural Unsupervised Machine Translation
onilab
0
120
Tell-and-Answer: Towards Explainable Visual Question Answering using Attributes and Captions
onilab
0
72
Card-660: A Reliable Evaluation Framework for Rare Word Representation Models
onilab
0
37
A Word-Complexity Lexicon and A Neural Readability Ranking Model for Lexical Simplification
onilab
0
130
Integrating Transformer and Paraphrase Rules for Sentence Simplification
onilab
0
61
An Auto-Encoder Matching Model for Learning Utterance-Level Semantic Dependency in Dialogue Generation
onilab
0
57
Generating More Interesting Responses in Neural Conversation Models with Distributional Constraints
onilab
0
100
Modeling Multi-turn Conversation with Deep Utterance Aggregation
onilab
0
98
Learning Semantic Sentence Embeddings using Pair-wise Discriminator
onilab
0
120
Other Decks in Research
See All in Research
[IBIS 2025] 深層基盤モデルのための強化学習驚きから理論にもとづく納得へ
akifumi_wachi
19
9.5k
生成AI による論文執筆サポート・ワークショップ 論文執筆・推敲編 / Generative AI-Assisted Paper Writing Support Workshop: Drafting and Revision Edition
ks91
PRO
0
120
都市交通マスタープランとその後への期待@熊本商工会議所・熊本経済同友会
trafficbrain
0
120
世界の人気アプリ100個を分析して見えたペイウォール設計の心得
akihiro_kokubo
PRO
66
37k
データサイエンティストの業務変化
datascientistsociety
PRO
0
220
ウェブ・ソーシャルメディア論文読み会 第36回: The Stepwise Deception: Simulating the Evolution from True News to Fake News with LLM Agents (EMNLP, 2025)
hkefka385
0
150
財務諸表監査のための逐次検定
masakat0
1
250
2026-01-30-MandSL-textbook-jp-cos-lod
yegusa
0
160
地域丸ごとデイサービス「Go トレ」の紹介
smartfukushilab1
0
910
Multi-Agent Large Language Models for Code Intelligence: Opportunities, Challenges, and Research Directions
fatemeh_fard
0
120
AIスパコン「さくらONE」の オブザーバビリティ / Observability for AI Supercomputer SAKURAONE
yuukit
2
1.2k
CoRL2025速報
rpc
4
4.1k
Featured
See All Featured
How STYLIGHT went responsive
nonsquared
100
6k
The Cost Of JavaScript in 2023
addyosmani
55
9.5k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
37
6.3k
How to train your dragon (web standard)
notwaldorf
97
6.5k
Digital Ethics as a Driver of Design Innovation
axbom
PRO
1
180
Pawsitive SEO: Lessons from My Dog (and Many Mistakes) on Thriving as a Consultant in the Age of AI
davidcarrasco
0
64
Bioeconomy Workshop: Dr. Julius Ecuru, Opportunities for a Bioeconomy in West Africa
akademiya2063
PRO
1
54
Exploring anti-patterns in Rails
aemeredith
2
250
Introduction to Domain-Driven Design and Collaborative software design
baasie
1
580
Ecommerce SEO: The Keys for Success Now & Beyond - #SERPConf2024
aleyda
1
1.8k
Fashionably flexible responsive web design (full day workshop)
malarkey
408
66k
Build The Right Thing And Hit Your Dates
maggiecrowley
38
3k
Transcript
SGM: Sequence Generation Model for Multi-Label Classification 2018/10/23
1
1. 2. 3. 4. 5.
2
1. 2. 3. 4. 5.
3
#" n Multi Label Classification(MLC) (,$. >2 !'& -E n
?6: MLC-E>2Single Label Classification)+ Binary Relevancepairwise ranking loss; $ ! 6: n %0: !C<D3B) ! *574=/ n A3 seq2seq; sequence generation! 18%@-E?9 4
1. 2. 3. 4. 5.
5
6
7
Encoder n Bi-LSTM n $! # n
$! # "# !" = LSTM !"() , +" !" = LSTM !",) , +" !" = !" ; !" 8
9
Attention n * &2#,.+ * '% n Attention *(
3 4" /1 n !" , $" , %"&'-$( decoder!40) 10
Attention n ! n Decoder 11
12
Decoder n LSTM n %#" n !"#$% − 1
! n ( !"#$ % − 1 &! global embedding($) 13
Decoder n $(& !% )' n !" , !$
, %$ n &' !! " # &' ( = * −∞ ( . ) 0 12ℎ456.74 14
Global Embedding n #!* % ) (!* n
#!*-+ ".!* '&/ (exposure bias) n Global embedding $, n !" , !$ ∈ ℝ'×' 15
1. 2. 3. 4. 5.
16
"- n l Reuters Corpus Volume I (RCV1-V2) l
'800,000 ( l Arxiv Academic Paper Dataset (AAPD) l 55,840 )$ !* l &,#.+ % 17
n l Hamming-loss l! ", $ " =
& '()*+( ∑ -./ '()*+(0& 1("- ≠ $ "- ) l Micro-F1 n l Binary Relevance(BR) l Classifier Chains(CC) l Label Powerset(LP) l CNN l CNN-RNN 18
19
1. 2. 3. 4. 5.
20
n Global Embedding ! "#$%
& n 21
n sorting Ablation Experiment
n 22
! 23 n "( )
1. 2. 3. 4. 5.
24
9; n Multi-label classification"68&3/0 =5> ( n 1 decoder2<4
sequence generation 4%@7,)# /' n * ! +. $-:? 25