Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
SGM: Sequence Generation Model for Multi-Label ...
Search
onizuka laboratory
October 23, 2018
Research
0
80
SGM: Sequence Generation Model for Multi-Label Classification
弊研究室で行なったCOLING2018読み会の発表資料です。
onizuka laboratory
October 23, 2018
Tweet
Share
More Decks by onizuka laboratory
See All by onizuka laboratory
Phrase-Based & Neural Unsupervised Machine Translation
onilab
0
120
Tell-and-Answer: Towards Explainable Visual Question Answering using Attributes and Captions
onilab
0
72
Card-660: A Reliable Evaluation Framework for Rare Word Representation Models
onilab
0
37
A Word-Complexity Lexicon and A Neural Readability Ranking Model for Lexical Simplification
onilab
0
130
Integrating Transformer and Paraphrase Rules for Sentence Simplification
onilab
0
61
An Auto-Encoder Matching Model for Learning Utterance-Level Semantic Dependency in Dialogue Generation
onilab
0
57
Generating More Interesting Responses in Neural Conversation Models with Distributional Constraints
onilab
0
100
Modeling Multi-turn Conversation with Deep Utterance Aggregation
onilab
0
98
Learning Semantic Sentence Embeddings using Pair-wise Discriminator
onilab
0
120
Other Decks in Research
See All in Research
LLMアプリケーションの透明性について
fufufukakaka
0
130
Attaques quantiques sur Bitcoin : comment se protéger ?
rlifchitz
0
140
Earth AI: Unlocking Geospatial Insights with Foundation Models and Cross-Modal Reasoning
satai
3
480
Upgrading Multi-Agent Pathfinding for the Real World
kei18
0
190
データサイエンティストの業務変化
datascientistsociety
PRO
0
220
生成AIとうまく付き合うためのプロンプトエンジニアリング
yuri_ohashi
0
130
ブレグマン距離最小化に基づくリース表現量推定:バイアス除去学習の統一理論
masakat0
0
140
CoRL2025速報
rpc
4
4.1k
2026-01-30-MandSL-textbook-jp-cos-lod
yegusa
0
170
OWASP KansaiDAY 2025.09_文系OSINTハンズオン
owaspkansai
0
110
Combining Deep Learning and Street View Imagery to Map Smallholder Crop Types
satai
3
570
"主観で終わらせない"定性データ活用 ― プロダクトディスカバリーを加速させるインサイトマネジメント / Utilizing qualitative data that "doesn't end with subjectivity" - Insight management that accelerates product discovery
kaminashi
15
20k
Featured
See All Featured
Six Lessons from altMBA
skipperchong
29
4.1k
Between Models and Reality
mayunak
1
190
The Director’s Chair: Orchestrating AI for Truly Effective Learning
tmiket
1
96
RailsConf 2023
tenderlove
30
1.3k
WCS-LA-2024
lcolladotor
0
450
Abbi's Birthday
coloredviolet
1
4.7k
How to optimise 3,500 product descriptions for ecommerce in one day using ChatGPT
katarinadahlin
PRO
0
3.4k
Neural Spatial Audio Processing for Sound Field Analysis and Control
skoyamalab
0
170
Marketing Yourself as an Engineer | Alaka | Gurzu
gurzu
0
130
Learning to Love Humans: Emotional Interface Design
aarron
275
41k
Ruling the World: When Life Gets Gamed
codingconduct
0
140
[RailsConf 2023] Rails as a piece of cake
palkan
59
6.3k
Transcript
SGM: Sequence Generation Model for Multi-Label Classification 2018/10/23
1
1. 2. 3. 4. 5.
2
1. 2. 3. 4. 5.
3
#" n Multi Label Classification(MLC) (,$. >2 !'& -E n
?6: MLC-E>2Single Label Classification)+ Binary Relevancepairwise ranking loss; $ ! 6: n %0: !C<D3B) ! *574=/ n A3 seq2seq; sequence generation! 18%@-E?9 4
1. 2. 3. 4. 5.
5
6
7
Encoder n Bi-LSTM n $! # n
$! # "# !" = LSTM !"() , +" !" = LSTM !",) , +" !" = !" ; !" 8
9
Attention n * &2#,.+ * '% n Attention *(
3 4" /1 n !" , $" , %"&'-$( decoder!40) 10
Attention n ! n Decoder 11
12
Decoder n LSTM n %#" n !"#$% − 1
! n ( !"#$ % − 1 &! global embedding($) 13
Decoder n $(& !% )' n !" , !$
, %$ n &' !! " # &' ( = * −∞ ( . ) 0 12ℎ456.74 14
Global Embedding n #!* % ) (!* n
#!*-+ ".!* '&/ (exposure bias) n Global embedding $, n !" , !$ ∈ ℝ'×' 15
1. 2. 3. 4. 5.
16
"- n l Reuters Corpus Volume I (RCV1-V2) l
'800,000 ( l Arxiv Academic Paper Dataset (AAPD) l 55,840 )$ !* l &,#.+ % 17
n l Hamming-loss l! ", $ " =
& '()*+( ∑ -./ '()*+(0& 1("- ≠ $ "- ) l Micro-F1 n l Binary Relevance(BR) l Classifier Chains(CC) l Label Powerset(LP) l CNN l CNN-RNN 18
19
1. 2. 3. 4. 5.
20
n Global Embedding ! "#$%
& n 21
n sorting Ablation Experiment
n 22
! 23 n "( )
1. 2. 3. 4. 5.
24
9; n Multi-label classification"68&3/0 =5> ( n 1 decoder2<4
sequence generation 4%@7,)# /' n * ! +. $-:? 25