Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
SGM: Sequence Generation Model for Multi-Label ...
Search
onizuka laboratory
October 23, 2018
Research
0
77
SGM: Sequence Generation Model for Multi-Label Classification
弊研究室で行なったCOLING2018読み会の発表資料です。
onizuka laboratory
October 23, 2018
Tweet
Share
More Decks by onizuka laboratory
See All by onizuka laboratory
Phrase-Based & Neural Unsupervised Machine Translation
onilab
0
110
Tell-and-Answer: Towards Explainable Visual Question Answering using Attributes and Captions
onilab
0
71
Card-660: A Reliable Evaluation Framework for Rare Word Representation Models
onilab
0
33
A Word-Complexity Lexicon and A Neural Readability Ranking Model for Lexical Simplification
onilab
0
120
Integrating Transformer and Paraphrase Rules for Sentence Simplification
onilab
0
59
An Auto-Encoder Matching Model for Learning Utterance-Level Semantic Dependency in Dialogue Generation
onilab
0
55
Generating More Interesting Responses in Neural Conversation Models with Distributional Constraints
onilab
0
100
Modeling Multi-turn Conversation with Deep Utterance Aggregation
onilab
0
95
Learning Semantic Sentence Embeddings using Pair-wise Discriminator
onilab
0
120
Other Decks in Research
See All in Research
利用シーンを意識した推薦システム〜SpotifyとAmazonの事例から〜
kuri8ive
1
250
VectorLLM: Human-like Extraction of Structured Building Contours via Multimodal LLMs
satai
4
190
Galileo: Learning Global & Local Features of Many Remote Sensing Modalities
satai
3
230
Minimax and Bayes Optimal Best-arm Identification: Adaptive Experimental Design for Treatment Choice
masakat0
0
170
AlphaEarth Foundations: An embedding field model for accurate and efficient global mapping from sparse label data
satai
1
200
AIによる画像認識技術の進化 -25年の技術変遷を振り返る-
hf149
7
4k
AWSで実現した大規模日本語VLM学習用データセット "MOMIJI" 構築パイプライン/buiding-momiji
studio_graph
2
500
論文読み会 SNLP2025 Learning Dynamics of LLM Finetuning. In: ICLR 2025
s_mizuki_nlp
0
200
機械学習と数理最適化の融合 (MOAI) による革新
mickey_kubo
0
310
[論文紹介] Intuitive Fine-Tuning
ryou0634
0
110
大規模な2値整数計画問題に対する 効率的な重み付き局所探索法
mickey_kubo
1
360
国際論文を出そう!ICRA / IROS / RA-L への論文投稿の心構えとノウハウ / RSJ2025 Luncheon Seminar
koide3
6
4.6k
Featured
See All Featured
Context Engineering - Making Every Token Count
addyosmani
2
41
The Language of Interfaces
destraynor
161
25k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
53
2.9k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
32
1.5k
Become a Pro
speakerdeck
PRO
29
5.5k
Bootstrapping a Software Product
garrettdimon
PRO
307
110k
Mobile First: as difficult as doing things right
swwweet
224
9.9k
Reflections from 52 weeks, 52 projects
jeffersonlam
352
21k
Imperfection Machines: The Place of Print at Facebook
scottboms
268
13k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
48
9.7k
Designing for humans not robots
tammielis
253
25k
Scaling GitHub
holman
463
140k
Transcript
SGM: Sequence Generation Model for Multi-Label Classification 2018/10/23
1
1. 2. 3. 4. 5.
2
1. 2. 3. 4. 5.
3
#" n Multi Label Classification(MLC) (,$. >2 !'& -E n
?6: MLC-E>2Single Label Classification)+ Binary Relevancepairwise ranking loss; $ ! 6: n %0: !C<D3B) ! *574=/ n A3 seq2seq; sequence generation! 18%@-E?9 4
1. 2. 3. 4. 5.
5
6
7
Encoder n Bi-LSTM n $! # n
$! # "# !" = LSTM !"() , +" !" = LSTM !",) , +" !" = !" ; !" 8
9
Attention n * &2#,.+ * '% n Attention *(
3 4" /1 n !" , $" , %"&'-$( decoder!40) 10
Attention n ! n Decoder 11
12
Decoder n LSTM n %#" n !"#$% − 1
! n ( !"#$ % − 1 &! global embedding($) 13
Decoder n $(& !% )' n !" , !$
, %$ n &' !! " # &' ( = * −∞ ( . ) 0 12ℎ456.74 14
Global Embedding n #!* % ) (!* n
#!*-+ ".!* '&/ (exposure bias) n Global embedding $, n !" , !$ ∈ ℝ'×' 15
1. 2. 3. 4. 5.
16
"- n l Reuters Corpus Volume I (RCV1-V2) l
'800,000 ( l Arxiv Academic Paper Dataset (AAPD) l 55,840 )$ !* l &,#.+ % 17
n l Hamming-loss l! ", $ " =
& '()*+( ∑ -./ '()*+(0& 1("- ≠ $ "- ) l Micro-F1 n l Binary Relevance(BR) l Classifier Chains(CC) l Label Powerset(LP) l CNN l CNN-RNN 18
19
1. 2. 3. 4. 5.
20
n Global Embedding ! "#$%
& n 21
n sorting Ablation Experiment
n 22
! 23 n "( )
1. 2. 3. 4. 5.
24
9; n Multi-label classification"68&3/0 =5> ( n 1 decoder2<4
sequence generation 4%@7,)# /' n * ! +. $-:? 25