Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Learning Semantic Sentence Embeddings using Pai...
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
onizuka laboratory
October 23, 2018
Research
0
120
Learning Semantic Sentence Embeddings using Pair-wise Discriminator
弊研究室で行なったCOLING2018読み会の発表資料です。
onizuka laboratory
October 23, 2018
Tweet
Share
More Decks by onizuka laboratory
See All by onizuka laboratory
Phrase-Based & Neural Unsupervised Machine Translation
onilab
0
120
Tell-and-Answer: Towards Explainable Visual Question Answering using Attributes and Captions
onilab
0
72
Card-660: A Reliable Evaluation Framework for Rare Word Representation Models
onilab
0
37
A Word-Complexity Lexicon and A Neural Readability Ranking Model for Lexical Simplification
onilab
0
130
Integrating Transformer and Paraphrase Rules for Sentence Simplification
onilab
0
61
An Auto-Encoder Matching Model for Learning Utterance-Level Semantic Dependency in Dialogue Generation
onilab
0
57
Generating More Interesting Responses in Neural Conversation Models with Distributional Constraints
onilab
0
100
Modeling Multi-turn Conversation with Deep Utterance Aggregation
onilab
0
98
SGM: Sequence Generation Model for Multi-Label Classification
onilab
0
80
Other Decks in Research
See All in Research
教師あり学習と強化学習で作る 最強の数学特化LLM
analokmaus
2
890
Earth AI: Unlocking Geospatial Insights with Foundation Models and Cross-Modal Reasoning
satai
3
480
AIスーパーコンピュータにおけるLLM学習処理性能の計測と可観測性 / AI Supercomputer LLM Benchmarking and Observability
yuukit
1
650
Pythonでジオを使い倒そう! 〜それとFOSS4G Hiroshima 2026のご紹介を少し〜
wata909
0
1.3k
Mamba-in-Mamba: Centralized Mamba-Cross-Scan in Tokenized Mamba Model for Hyperspectral Image Classification
satai
3
590
生成AIとうまく付き合うためのプロンプトエンジニアリング
yuri_ohashi
0
130
POI: Proof of Identity
katsyoshi
0
140
世界モデルにおける分布外データ対応の方法論
koukyo1994
7
1.5k
地域丸ごとデイサービス「Go トレ」の紹介
smartfukushilab1
0
920
Remote sensing × Multi-modal meta survey
satai
4
710
Collective Predictive Coding and World Models in LLMs: A System 0/1/2/3 Perspective on Hierarchical Physical AI (IEEE SII 2026 Plenary Talk)
tanichu
1
250
生成AI による論文執筆サポート・ワークショップ 論文執筆・推敲編 / Generative AI-Assisted Paper Writing Support Workshop: Drafting and Revision Edition
ks91
PRO
0
120
Featured
See All Featured
The agentic SEO stack - context over prompts
schlessera
0
640
Design of three-dimensional binary manipulators for pick-and-place task avoiding obstacles (IECON2024)
konakalab
0
350
The Illustrated Children's Guide to Kubernetes
chrisshort
51
51k
Measuring & Analyzing Core Web Vitals
bluesmoon
9
750
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
359
30k
Reflections from 52 weeks, 52 projects
jeffersonlam
356
21k
Context Engineering - Making Every Token Count
addyosmani
9
660
Ethics towards AI in product and experience design
skipperchong
2
200
ReactJS: Keep Simple. Everything can be a component!
pedronauck
666
130k
Java REST API Framework Comparison - PWX 2021
mraible
34
9.1k
The B2B funnel & how to create a winning content strategy
katarinadahlin
PRO
1
280
Fashionably flexible responsive web design (full day workshop)
malarkey
408
66k
Transcript
$0-*/(:0.*,"* UI0DU -FBSOJOH4FNBOUJD4FOUFODF &NCFEEJOHT VTJOH1BJSXJTF %JTDSJNJOBUPS (3"%6"5&4$)00-PG*/'03."5*0/4$*&/$&BOE5&$)/0-0(: 04","6/*7 +6/:"5",":"."
1BQFS*/'0 #BESJ /BSBZBOB1BUSP 7JOPE,VNBS,VSNJ 4BOEFFQ,VNBS 7JOBZ/BNCPPEJSJ l-FBSOJOH4FNBOUJD4FOUFODF&NCFEEJOHT VTJOH 4FRVFOUJBM1BJSXJTF%JTDSJNJOBUPSz *O1SPDFFEJOHTPG$0-*/(
ݴ͍͑ੜϞσϧΛվྑͯͭ͠Α͍ &NCFEEJOH͕ಘΒΕΔΑ͏ʹͨ͠Α
$POUFOUT *OUSPEVDUJPO .FUIPET &YQFSJNFOUT $PODMVTJPO
#BDLHSPVOE • ҙຯ͕͍ۙจ͖ۙͮɼҙຯ͕ԕ͍จԕ͔͟ΔΑ͏ͳ จͷࢄදݱʢ&NCFEEJOHʣΛಘ͍ͨ • ݴ͍͑ੜ͕ղ͚ΔΑ͏ͳදݱΛ֫ಘ͢Εྑ͍ • 4FR4FRͰσίʔμͷηϧ͝ͱʹϩεΛܭࢉ͢ΔͨΊɼ จશମ͕ਖ਼͘͠ੜ͞ΕΔอূ͕ͳ͍ ˠࢀরจͱੜจͷҙຯతͳۙ͞Λอূ͢Δϩε͕ཉ͍͠
$POUSJCVUJPOT • ࢀরจͱੜจͷҙຯతͳۙ͞Λอূ͢Δ QBJSXJTFEJTDSJNJOBUPSMPTT HMPCBMMPTT ͷఏҊ • 4FOUJNFOU"OBMZTJTʹద༻ՄೳͰ͋Δ͜ͱΛࣔ͢ 4UBOGPSE4FOUJNFOU5SFFCBOLͰ 405"
$POUFOUT *OUSPEVDUJPO .FUIPET &YQFSJNFOUT $PODMVTJPO
.PEFM0WFSWJFX • ௨ৗͷ 4FR4FR ʹɼੜ݁Ռͱ (SPVOEUSVUIͷΤϯίʔυ݁Ռ͕ ۙ͘ͳΔΑ͏ʹֶश͢Δ 1BJSXJTF%JTDSJNJOBUPSΛՃ 1BJSXJTF%JTDSJNJOBUPS
&ODPEFS %FDPEFS -45. &ODPEFS (SPVOE5SVUI -PDBMMPTT DSPTTFOUSPQZ (MPCBMMPTT 4FOUFODF &NCFEEJOH
-PTTGVODUJPOT • -PDBMMPTT τʔΫϯ͝ͱͷ $SPTT&OUSPQZʢ௨ৗͷ 4FR4FRͷֶशͱಉ༷ʣ 1BJSXJTF%JTDSJNJOBUPS &ODPEFS
%FDPEFS -45. &ODPEFS (SPVOE5SVUI -PDBMMPTT $SPTT&OUSPQZ (MPCBMMPTT 4FOUFODF &NCFEEJOH
-PTTGVODUJPOT • (MPCBMMPTT ੜจͱࢀরจͷ &NCFEEJOHͷੵΛ࠷େԽ ੜจͱόονͷࢀরจҎ֎ͷจͷ &NCFEEJOHͷੵΛ࠷খԽ 1BJSXJTF%JTDSJNJOBUPS
&ODPEFS %FDPEFS -45. &ODPEFS (SPVOE5SVUI -PDBMMPTT DSPTTFOUSPQZ (MPCBMMPTT 4FOUFODF &NCFEEJOH
-PTTGVODUJPOT • ϩεؔʢ5PUBMʣ MPDBMMPTTͱ HMPCBMMPTTͷ 1BJSXJTF%JTDSJNJOBUPS &ODPEFS %FDPEFS
-45. &ODPEFS (SPVOE5SVUI -PDBMMPTT DSPTTFOUSPQZ (MPCBMMPTT 4FOUFODF &NCFEEJOH
$POUFOUT *OUSPEVDUJPO .FUIPET &YQFSJNFOUT $PODMVTJPO
&YQFSJNFOUTPWFSWJFX ͭͷλεΫͰ࣮ݧ • 1BSBQISBTFHFOFSBUJPO • 4FOUJNFOU"OBMZTJT
1BSBQISBTF(FOFSBUJPO • σʔληοτ 2VPSB EBUBTFU2VPSB ͷ࣭จ͔Βॏෳͨ͠ϖΞΛநग़ʢ,ʣ • ࣮ݧઃఆ ,Λ UFTUηοτɼ,Λ
WBMJEBUJPOηοτͱͯ͠༻͍Δ ੜจͱࢀরจͷྨࣅΛ #-&6ͰධՁ
1BSBQISBTF(FOFSBUJPO Ø#BTFMJOFʢ4FR4FRʣ ͱͷൺֱ %JTDSJNJOBUPSͱ &ODPEFSॏΈΛڞ༗ͨ͠ํ͕ྑ͍ σʔληοτͷαΠζʹؔΘΒͣɼ&%%-( TIBSFE ͕ͭΑ͍
1BSBQISBTF(FOFSBUJPO Øଞͷख๏ͱͷൺֱ
4FOUJNFOU"OBMZTJT • σʔληοτ 4UBOGPSE4FOUJNFOU5SFFCBOL 5SBJO, 7BMJE, 5FTU, • ࣮ݧઃఆ GJOFHSBJOFEDMBTTJGJDBUJPOUBTL
ྨ ͰධՁ \7FSZOFHBUJWF /FHBUJWF /FVUSBM 1PTJUJWF 7FSZQPTJUJWF^ ධՁࢦඪ &SSPS3BUF
4FOUJNFOU"OBMZTJT Ø݁Ռ
$POUFOUT *OUSPEVDUJPO .FUIPET &YQFSJNFOUT $PODMVTJPO
$PODMVTJPO • 4FR4FRϕʔεͷݴ͍͑ੜϞσϧʹΑΔจ &NCFEEJOHख๏ʹର͠ɼ ࢀরจͱੜจͷҙຯతͳۙ͞Λอূ͢Δ QBJSXJTFEJTDSJNJOBUPSMPTT HMPCBMMPTT ΛՃ • 1BSBQISBTF(FOFSBUJPO
4FOUJNFOU"OBMZTJTͰ 405"
͓ؾ࣋ͪʢ͋ͱͰফ͢εϥΠυʣ Ø 405"Λେʑతʹओு͢Δʹ͍Ζ͍Ζͱऑ͍ؾ͕͢Δʜ • 1BSBQISBTFଞͷσʔληοτࢼ͖͢Ͱʜ • 4FOUJNFOU 2VJDL5IPVHIUT ͱ͔ *OGFS4FOU
ͱൺֱ͖͢Ͱʜ ͳΜͰ GJOFHSBJOFE DMBTTFT ͚ͩͳͷ͔Θ͔Βͳ͍ʜ CJOBSZࡌͤͯ͘ΕͨΒ 25ͷจͱൺֱͰ͖Δͷʹʜ Ø %JTDSJNJOBUPS ػߏࣗମ 7"&ͷ ,-DPMMBQTF੍ͱ͔ʹ͑ͦ͏