$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Learning Semantic Sentence Embeddings using Pai...
Search
onizuka laboratory
October 23, 2018
Research
0
120
Learning Semantic Sentence Embeddings using Pair-wise Discriminator
弊研究室で行なったCOLING2018読み会の発表資料です。
onizuka laboratory
October 23, 2018
Tweet
Share
More Decks by onizuka laboratory
See All by onizuka laboratory
Phrase-Based & Neural Unsupervised Machine Translation
onilab
0
120
Tell-and-Answer: Towards Explainable Visual Question Answering using Attributes and Captions
onilab
0
72
Card-660: A Reliable Evaluation Framework for Rare Word Representation Models
onilab
0
36
A Word-Complexity Lexicon and A Neural Readability Ranking Model for Lexical Simplification
onilab
0
130
Integrating Transformer and Paraphrase Rules for Sentence Simplification
onilab
0
61
An Auto-Encoder Matching Model for Learning Utterance-Level Semantic Dependency in Dialogue Generation
onilab
0
57
Generating More Interesting Responses in Neural Conversation Models with Distributional Constraints
onilab
0
100
Modeling Multi-turn Conversation with Deep Utterance Aggregation
onilab
0
98
SGM: Sequence Generation Model for Multi-Label Classification
onilab
0
80
Other Decks in Research
See All in Research
教師あり学習と強化学習で作る 最強の数学特化LLM
analokmaus
2
730
地域丸ごとデイサービス「Go トレ」の紹介
smartfukushilab1
0
620
SegEarth-OV: Towards Training-Free Open-Vocabulary Segmentation for Remote Sensing Images
satai
3
490
思いつきが武器になる:研究というゲームを始めよう / Ideas Are Your Equipments : Let the Game of Research Begin!
ks91
PRO
0
100
病院向け生成AIプロダクト開発の実践と課題
hagino3000
0
440
Panopticon: Advancing Any-Sensor Foundation Models for Earth Observation
satai
3
400
VectorLLM: Human-like Extraction of Structured Building Contours via Multimodal LLMs
satai
4
500
超高速データサイエンス
matsui_528
1
310
IMC の細かすぎる話 2025
smly
2
780
世界の人気アプリ100個を分析して見えたペイウォール設計の心得
akihiro_kokubo
PRO
63
34k
Sat2City:3D City Generation from A Single Satellite Image with Cascaded Latent Diffusion
satai
4
330
Multi-Agent Large Language Models for Code Intelligence: Opportunities, Challenges, and Research Directions
fatemeh_fard
0
110
Featured
See All Featured
Intergalactic Javascript Robots from Outer Space
tanoku
273
27k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
12
970
Side Projects
sachag
455
43k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
132
19k
The Power of CSS Pseudo Elements
geoffreycrofte
80
6.1k
Building a Modern Day E-commerce SEO Strategy
aleyda
45
8.3k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
249
1.3M
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
31
3k
What’s in a name? Adding method to the madness
productmarketing
PRO
24
3.8k
[RailsConf 2023] Rails as a piece of cake
palkan
58
6.2k
Keith and Marios Guide to Fast Websites
keithpitt
413
23k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
234
17k
Transcript
$0-*/(:0.*,"* UI0DU -FBSOJOH4FNBOUJD4FOUFODF &NCFEEJOHT VTJOH1BJSXJTF %JTDSJNJOBUPS (3"%6"5&4$)00-PG*/'03."5*0/4$*&/$&BOE5&$)/0-0(: 04","6/*7 +6/:"5",":"."
1BQFS*/'0 #BESJ /BSBZBOB1BUSP 7JOPE,VNBS,VSNJ 4BOEFFQ,VNBS 7JOBZ/BNCPPEJSJ l-FBSOJOH4FNBOUJD4FOUFODF&NCFEEJOHT VTJOH 4FRVFOUJBM1BJSXJTF%JTDSJNJOBUPSz *O1SPDFFEJOHTPG$0-*/(
ݴ͍͑ੜϞσϧΛվྑͯͭ͠Α͍ &NCFEEJOH͕ಘΒΕΔΑ͏ʹͨ͠Α
$POUFOUT *OUSPEVDUJPO .FUIPET &YQFSJNFOUT $PODMVTJPO
#BDLHSPVOE • ҙຯ͕͍ۙจ͖ۙͮɼҙຯ͕ԕ͍จԕ͔͟ΔΑ͏ͳ จͷࢄදݱʢ&NCFEEJOHʣΛಘ͍ͨ • ݴ͍͑ੜ͕ղ͚ΔΑ͏ͳදݱΛ֫ಘ͢Εྑ͍ • 4FR4FRͰσίʔμͷηϧ͝ͱʹϩεΛܭࢉ͢ΔͨΊɼ จશମ͕ਖ਼͘͠ੜ͞ΕΔอূ͕ͳ͍ ˠࢀরจͱੜจͷҙຯతͳۙ͞Λอূ͢Δϩε͕ཉ͍͠
$POUSJCVUJPOT • ࢀরจͱੜจͷҙຯతͳۙ͞Λอূ͢Δ QBJSXJTFEJTDSJNJOBUPSMPTT HMPCBMMPTT ͷఏҊ • 4FOUJNFOU"OBMZTJTʹద༻ՄೳͰ͋Δ͜ͱΛࣔ͢ 4UBOGPSE4FOUJNFOU5SFFCBOLͰ 405"
$POUFOUT *OUSPEVDUJPO .FUIPET &YQFSJNFOUT $PODMVTJPO
.PEFM0WFSWJFX • ௨ৗͷ 4FR4FR ʹɼੜ݁Ռͱ (SPVOEUSVUIͷΤϯίʔυ݁Ռ͕ ۙ͘ͳΔΑ͏ʹֶश͢Δ 1BJSXJTF%JTDSJNJOBUPSΛՃ 1BJSXJTF%JTDSJNJOBUPS
&ODPEFS %FDPEFS -45. &ODPEFS (SPVOE5SVUI -PDBMMPTT DSPTTFOUSPQZ (MPCBMMPTT 4FOUFODF &NCFEEJOH
-PTTGVODUJPOT • -PDBMMPTT τʔΫϯ͝ͱͷ $SPTT&OUSPQZʢ௨ৗͷ 4FR4FRͷֶशͱಉ༷ʣ 1BJSXJTF%JTDSJNJOBUPS &ODPEFS
%FDPEFS -45. &ODPEFS (SPVOE5SVUI -PDBMMPTT $SPTT&OUSPQZ (MPCBMMPTT 4FOUFODF &NCFEEJOH
-PTTGVODUJPOT • (MPCBMMPTT ੜจͱࢀরจͷ &NCFEEJOHͷੵΛ࠷େԽ ੜจͱόονͷࢀরจҎ֎ͷจͷ &NCFEEJOHͷੵΛ࠷খԽ 1BJSXJTF%JTDSJNJOBUPS
&ODPEFS %FDPEFS -45. &ODPEFS (SPVOE5SVUI -PDBMMPTT DSPTTFOUSPQZ (MPCBMMPTT 4FOUFODF &NCFEEJOH
-PTTGVODUJPOT • ϩεؔʢ5PUBMʣ MPDBMMPTTͱ HMPCBMMPTTͷ 1BJSXJTF%JTDSJNJOBUPS &ODPEFS %FDPEFS
-45. &ODPEFS (SPVOE5SVUI -PDBMMPTT DSPTTFOUSPQZ (MPCBMMPTT 4FOUFODF &NCFEEJOH
$POUFOUT *OUSPEVDUJPO .FUIPET &YQFSJNFOUT $PODMVTJPO
&YQFSJNFOUTPWFSWJFX ͭͷλεΫͰ࣮ݧ • 1BSBQISBTFHFOFSBUJPO • 4FOUJNFOU"OBMZTJT
1BSBQISBTF(FOFSBUJPO • σʔληοτ 2VPSB EBUBTFU2VPSB ͷ࣭จ͔Βॏෳͨ͠ϖΞΛநग़ʢ,ʣ • ࣮ݧઃఆ ,Λ UFTUηοτɼ,Λ
WBMJEBUJPOηοτͱͯ͠༻͍Δ ੜจͱࢀরจͷྨࣅΛ #-&6ͰධՁ
1BSBQISBTF(FOFSBUJPO Ø#BTFMJOFʢ4FR4FRʣ ͱͷൺֱ %JTDSJNJOBUPSͱ &ODPEFSॏΈΛڞ༗ͨ͠ํ͕ྑ͍ σʔληοτͷαΠζʹؔΘΒͣɼ&%%-( TIBSFE ͕ͭΑ͍
1BSBQISBTF(FOFSBUJPO Øଞͷख๏ͱͷൺֱ
4FOUJNFOU"OBMZTJT • σʔληοτ 4UBOGPSE4FOUJNFOU5SFFCBOL 5SBJO, 7BMJE, 5FTU, • ࣮ݧઃఆ GJOFHSBJOFEDMBTTJGJDBUJPOUBTL
ྨ ͰධՁ \7FSZOFHBUJWF /FHBUJWF /FVUSBM 1PTJUJWF 7FSZQPTJUJWF^ ධՁࢦඪ &SSPS3BUF
4FOUJNFOU"OBMZTJT Ø݁Ռ
$POUFOUT *OUSPEVDUJPO .FUIPET &YQFSJNFOUT $PODMVTJPO
$PODMVTJPO • 4FR4FRϕʔεͷݴ͍͑ੜϞσϧʹΑΔจ &NCFEEJOHख๏ʹର͠ɼ ࢀরจͱੜจͷҙຯతͳۙ͞Λอূ͢Δ QBJSXJTFEJTDSJNJOBUPSMPTT HMPCBMMPTT ΛՃ • 1BSBQISBTF(FOFSBUJPO
4FOUJNFOU"OBMZTJTͰ 405"
͓ؾ࣋ͪʢ͋ͱͰফ͢εϥΠυʣ Ø 405"Λେʑతʹओு͢Δʹ͍Ζ͍Ζͱऑ͍ؾ͕͢Δʜ • 1BSBQISBTFଞͷσʔληοτࢼ͖͢Ͱʜ • 4FOUJNFOU 2VJDL5IPVHIUT ͱ͔ *OGFS4FOU
ͱൺֱ͖͢Ͱʜ ͳΜͰ GJOFHSBJOFE DMBTTFT ͚ͩͳͷ͔Θ͔Βͳ͍ʜ CJOBSZࡌͤͯ͘ΕͨΒ 25ͷจͱൺֱͰ͖Δͷʹʜ Ø %JTDSJNJOBUPS ػߏࣗମ 7"&ͷ ,-DPMMBQTF੍ͱ͔ʹ͑ͦ͏