Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Generating More Interesting Responses in Neural...
Search
onizuka laboratory
December 18, 2018
Research
0
100
Generating More Interesting Responses in Neural Conversation Models with Distributional Constraints
弊研究室で行なったEMNLP2018読み会の発表資料です。
onizuka laboratory
December 18, 2018
Tweet
Share
More Decks by onizuka laboratory
See All by onizuka laboratory
Phrase-Based & Neural Unsupervised Machine Translation
onilab
0
110
Tell-and-Answer: Towards Explainable Visual Question Answering using Attributes and Captions
onilab
0
71
Card-660: A Reliable Evaluation Framework for Rare Word Representation Models
onilab
0
33
A Word-Complexity Lexicon and A Neural Readability Ranking Model for Lexical Simplification
onilab
0
120
Integrating Transformer and Paraphrase Rules for Sentence Simplification
onilab
0
59
An Auto-Encoder Matching Model for Learning Utterance-Level Semantic Dependency in Dialogue Generation
onilab
0
55
Modeling Multi-turn Conversation with Deep Utterance Aggregation
onilab
0
95
Learning Semantic Sentence Embeddings using Pair-wise Discriminator
onilab
0
120
SGM: Sequence Generation Model for Multi-Label Classification
onilab
0
77
Other Decks in Research
See All in Research
AI エージェントを活用した研究再現性の自動定量評価 / scisci2025
upura
1
110
NLP2025SharedTask翻訳部門
moriokataku
0
300
20250624_熊本経済同友会6月例会講演
trafficbrain
1
120
MGDSS:慣性式モーションキャプチャを用いたジェスチャによるドローンの操作 / ec75-yamauchi
yumulab
0
240
2025年度人工知能学会全国大会チュートリアル講演「深層基盤モデルの数理」
taiji_suzuki
24
15k
Combinatorial Search with Generators
kei18
0
320
最適決定木を用いた処方的価格最適化
mickey_kubo
4
1.7k
実行環境に中立なWebAssemblyライブマイグレーション機構/techtalk-2025spring
chikuwait
0
220
Agentic AIとMCPを利用したサービス作成入門
mickey_kubo
0
260
チャッドローン:LLMによる画像認識を用いた自律型ドローンシステムの開発と実験 / ec75-morisaki
yumulab
1
450
Transparency to sustain open science infrastructure - Printemps Couperin
mlarrieu
1
180
データxデジタルマップで拓く ミラノ発・地域共創最前線
mapconcierge4agu
0
170
Featured
See All Featured
RailsConf 2023
tenderlove
30
1.1k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
507
140k
Done Done
chrislema
184
16k
Making the Leap to Tech Lead
cromwellryan
134
9.4k
Site-Speed That Sticks
csswizardry
10
670
Scaling GitHub
holman
459
140k
The Language of Interfaces
destraynor
158
25k
StorybookのUI Testing Handbookを読んだ
zakiyama
30
5.8k
Testing 201, or: Great Expectations
jmmastey
42
7.6k
VelocityConf: Rendering Performance Case Studies
addyosmani
331
24k
A Modern Web Designer's Workflow
chriscoyier
694
190k
The Pragmatic Product Professional
lauravandoore
35
6.7k
Transcript
&./-1:0.*,"* UI%FD (FOFSBUJOH .PSF*OUFSFTUJOH3FTQPOTFT JO/FVSBM$POWFSTBUJPO.PEFMT XJUI %JTUSJCVUJPOBM$POTUSBJOUT (3"%6"5&4$)00-PG*/'03."5*0/4$*&/$&BOE5&$)/0-0(: 04","6/*7
+6/:"5",":"."
1BQFS*/'0 "TIVUPTI #BIFUJ "MBO3JUUFS +JXFJ -J BOE#JMM%PMBO l(FOFSBUJOH.PSF*OUFSFTUJOH3FTQPOTFTJO/FVSBM $POWFSTBUJPO.PEFMTXJUI%JTUSJCVUJPOBM$POTUSBJOUTz *O1SPDFFEJOHTPG&./-1
ೖྗൃͱͷτϐοΫҰ؏ੑҙຯతྨࣅ͕ߴ͍ԠจΛੜ͢ΔΑ͏ʹ ੍Λ͔͚ͯσίʔυ͢Δ͜ͱͰɼ%VMM3FTQPOTFʹରॲͨ͠Α
$POUFOUT *OUSPEVDUJPO .FUIPET &YQFSJNFOUT $PODMVTJPO
*TTVF Ø࠷ਪఆʹΑΔ UFYUUPUFYUੜϞσϧೖྗจͱग़ྗจ͕ ΄΅ҰରҰରԠͷλεΫʢػց༁ͳͲʣͰ༗༻ ØԠੜଟରଟͷͨΊ࠷ਪఆͰʮͦ͏Ͱ͢Ͷʯʮ͍ʯ ͳͲͷ EVMMSFTQPOTFΛੜ͕ͪ͠
*TTVF ØަࠩΤϯτϩϐʔଛࣦ ʹΑΔԠੜ ʹ͓͚Δσίʔυྫ • τϐοΫϫʔυʹൺɼ ετοϓϫʔυͷ͕ ߴ͘ͳΓ͕ͪ • සͷ͍ޠ
ੜͮ͠Β͍
0WFSWJFX (PBMೖྗൃͱରԠͨ͠༰ޠΛଟؚ͘ΉΑ͏ͳԠจͷੜ 1SPQPTBM ೖྗจ 9 ग़ྗจ : ͱͨ͠ͱ͖ɼ • ग़ྗจͱԠจͷτϐοΫͷҰ؏ੑ
!"# $ % & , $ % ( • ग़ྗจͱԠจͷҙຯతྨࣅ !"# )#* & , )#* ( Λߟྀͨ͠ԠΛੜ͢ΔΑ͏ʹॏΈ͚͠ͳ͕Βσίʔυ͢Δ
$POUFOUT *OUSPEVDUJPO .FUIPET &YQFSJNFOUT $PODMVTJPO
"QQSPBDI ØτϐοΫͷҰ؏ੑ͕ߴ͘ͳΔΑ͏ʹग़ྗʢτϐοΫ੍ʣ Øग़ྗͱԠͷྨࣅ͕ߴ͘ͳΔΑ͏ʹग़ྗʢҙຯ੍ʣ τϐοΫྨࣅ ҙຯతྨࣅ
࣮ࡍͷσίʔυ୯ޠ୯ҐͰஞ࣍తʹग़ྗΛߦ͏ͨΊɼ τϐοΫ੍ɾҙຯ੍ʹ༻͍ΔείΞҎԼͷͭͷ݅ʀ • σίʔυ్தͷෆશͳจΛར༻Մೳ • ܭࢉίετ͕͍ Λຬͨ͢ඞཁ͕͋Δ %FDPEJOHXJUI%JTUSJCVUJPOBM $POTUSBJOUT*O
! " # ͷਪఆʹ )..-%"ϞσϧΛ࠾༻ จதͷ֤୯ޠʹ͍ͭͯɼͦͷ୯ޠ͕ • τϐοΫ 5Ͱ͋Δ֬ •
τϐοΫϫʔυͰ͋Δ֬ ͷੵΛͱΓɼτϐοΫϫʔυͷʢظʣͰॏΈ͚ฏۉ τϐοΫྨࣅ
! " # ͷਪఆʹ )..-%"ϞσϧΛ࠾༻ ཁ͢Δʹɿ୯ޠ͝ͱͷτϐοΫਪఆ݁ՌΛ͠߹Θͤ ˠσίʔυதͷෆશͳจʹஞ࣍తʹద༻Մೳ ྨࣅؔ ∆ !("|'
, ! ) ' ʹ୯७ͳυοτੵΛ࠾༻ τϐοΫྨࣅ
จͷࢄදݱ !"# $ Λ "SPSBΒ <>ͷख๏Λ༻͍ͯಘΔɿ ୯ޠͷϢχάϥϜ֬ % &
ύϥϝʔλ ' ୯ޠࢄදݱ () Λ༻͍ͯɼ(* = ∑ )∈* . ./0 ) () Λܭࢉ (* ͔ΒୈҰओ ཁૉΛҾ͘ ୈҰओػೳޠͷӨڹ͕େ͖͍ʢΒ͍͠ʣ ࣮ࡍʹ܇࿅ίʔύεΛ༻͍ͯओੳΛࣄલʹߦ͍ɼ σίʔυ࣌ʹͦͷ݁ՌΛར༻ʢίʔυΛݟΔݶΓʣ ҙຯతྨࣅ .0 7 27,- 2 .1 2 1 1 0 .1, A .
จͷࢄදݱ !"# $ Λ "SPSBΒ <>ͷख๏Λ༻͍ͯಘΔɿ ཁ͢Δʹɿ୯ޠ͝ͱͷࢄදݱͷॏΈ͖ฏۉ ˠσίʔυ࣌ʹஞ࣍తʹૉૣ͘ܭࢉՄೳ ྨࣅؔ %
&' , &) ʹ୯७ͳυοτੵΛ࠾༻ ҙຯతྨࣅ .0 7 27,- 2 .1 2 1 1 0 .1, A .
$POUFOUT *OUSPEVDUJPO .FUIPET &YQFSJNFOUT $PODMVTJPO
4FUUJOHT • σʔληοτ ܇࿅σʔλɿ0QFO4VCUJUMFTʢ.VSQBJSTʣ ςετσʔλɿ$PSOFMM.PWJF%JBMPHVF$PSQVTʢQBJST ʣ • ϕʔεϥΠϯ ..*Ԡͱೖྗͷ૬ޓใྔΛ࠷େԽ͢ΔϞσϧ !
= argmax( log + ! , + - 5"4FR4FRτϐοΫਪఆ݁ՌΛ "UUFOUJPOܭࢉʹ༻͍ΔϞσϧ
3FTVMUT "VUPNBUJD&WBMVBUJPO #-&6Λେ͖͘Լ͛ͣʹԠͷଟ༷ੑΛ্ ετοϓϫʔυ੍ʹޮՌ͋Γ
3FTVMUT )VNBO ਓखධՁͰԠͷΒ͠͞ΛଛͶͣʹ༰ͷॆ্࣮͕
$POUFOUT *OUSPEVDUJPO .FUIPET &YQFSJNFOUT $PODMVTJPO
$PODMVTJPO Ø ࢄදݱͷܗͰग़ྗͱԠͷτϐοΫྨࣅͱҙຯతྨࣅΛ ࢉग़͠ɼσίʔυ࣌ͷ੍ͱͯ͠ΈࠐΜͩ Ø ԠͷΒ͠͞ΛԼ͛Δ͜ͱͳ͘ɼଟ༷ੑΛ্ͤͨ͞