$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Generating More Interesting Responses in Neural...
Search
onizuka laboratory
December 18, 2018
Research
0
100
Generating More Interesting Responses in Neural Conversation Models with Distributional Constraints
弊研究室で行なったEMNLP2018読み会の発表資料です。
onizuka laboratory
December 18, 2018
Tweet
Share
More Decks by onizuka laboratory
See All by onizuka laboratory
Phrase-Based & Neural Unsupervised Machine Translation
onilab
0
120
Tell-and-Answer: Towards Explainable Visual Question Answering using Attributes and Captions
onilab
0
72
Card-660: A Reliable Evaluation Framework for Rare Word Representation Models
onilab
0
36
A Word-Complexity Lexicon and A Neural Readability Ranking Model for Lexical Simplification
onilab
0
130
Integrating Transformer and Paraphrase Rules for Sentence Simplification
onilab
0
61
An Auto-Encoder Matching Model for Learning Utterance-Level Semantic Dependency in Dialogue Generation
onilab
0
57
Modeling Multi-turn Conversation with Deep Utterance Aggregation
onilab
0
98
Learning Semantic Sentence Embeddings using Pair-wise Discriminator
onilab
0
120
SGM: Sequence Generation Model for Multi-Label Classification
onilab
0
80
Other Decks in Research
See All in Research
AIグラフィックデザインの進化:断片から統合(One Piece)へ / From Fragment to One Piece: A Survey on AI-Driven Graphic Design
shunk031
0
570
Multi-Agent Large Language Models for Code Intelligence: Opportunities, Challenges, and Research Directions
fatemeh_fard
0
110
その推薦システムの評価指標、ユーザーの感覚とズレてるかも
kuri8ive
1
270
VectorLLM: Human-like Extraction of Structured Building Contours via Multimodal LLMs
satai
4
500
MIRU2025 チュートリアル講演「ロボット基盤モデルの最前線」
haraduka
15
11k
Language Models Are Implicitly Continuous
eumesy
PRO
0
350
機械学習と数理最適化の融合 (MOAI) による革新
mickey_kubo
1
430
令和最新技術で伝統掲示板を再構築: HonoX で作る型安全なスレッドフロート型掲示板 / かろっく@calloc134 - Hono Conference 2025
calloc134
0
440
能動適応的実験計画
masakat0
2
1.1k
SkySense V2: A Unified Foundation Model for Multi-modal Remote Sensing
satai
3
150
LLM-jp-3 and beyond: Training Large Language Models
odashi
1
700
[IBIS 2025] 深層基盤モデルのための強化学習驚きから理論にもとづく納得へ
akifumi_wachi
15
8.1k
Featured
See All Featured
Bootstrapping a Software Product
garrettdimon
PRO
307
120k
Fantastic passwords and where to find them - at NoRuKo
philnash
52
3.5k
Navigating Team Friction
lara
191
16k
Intergalactic Javascript Robots from Outer Space
tanoku
273
27k
Designing for humans not robots
tammielis
254
26k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
12
970
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
16
1.8k
Statistics for Hackers
jakevdp
799
230k
The Hidden Cost of Media on the Web [PixelPalooza 2025]
tammyeverts
1
100
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
32
1.8k
Testing 201, or: Great Expectations
jmmastey
46
7.8k
The Cost Of JavaScript in 2023
addyosmani
55
9.3k
Transcript
&./-1:0.*,"* UI%FD (FOFSBUJOH .PSF*OUFSFTUJOH3FTQPOTFT JO/FVSBM$POWFSTBUJPO.PEFMT XJUI %JTUSJCVUJPOBM$POTUSBJOUT (3"%6"5&4$)00-PG*/'03."5*0/4$*&/$&BOE5&$)/0-0(: 04","6/*7
+6/:"5",":"."
1BQFS*/'0 "TIVUPTI #BIFUJ "MBO3JUUFS +JXFJ -J BOE#JMM%PMBO l(FOFSBUJOH.PSF*OUFSFTUJOH3FTQPOTFTJO/FVSBM $POWFSTBUJPO.PEFMTXJUI%JTUSJCVUJPOBM$POTUSBJOUTz *O1SPDFFEJOHTPG&./-1
ೖྗൃͱͷτϐοΫҰ؏ੑҙຯతྨࣅ͕ߴ͍ԠจΛੜ͢ΔΑ͏ʹ ੍Λ͔͚ͯσίʔυ͢Δ͜ͱͰɼ%VMM3FTQPOTFʹରॲͨ͠Α
$POUFOUT *OUSPEVDUJPO .FUIPET &YQFSJNFOUT $PODMVTJPO
*TTVF Ø࠷ਪఆʹΑΔ UFYUUPUFYUੜϞσϧೖྗจͱग़ྗจ͕ ΄΅ҰରҰରԠͷλεΫʢػց༁ͳͲʣͰ༗༻ ØԠੜଟରଟͷͨΊ࠷ਪఆͰʮͦ͏Ͱ͢Ͷʯʮ͍ʯ ͳͲͷ EVMMSFTQPOTFΛੜ͕ͪ͠
*TTVF ØަࠩΤϯτϩϐʔଛࣦ ʹΑΔԠੜ ʹ͓͚Δσίʔυྫ • τϐοΫϫʔυʹൺɼ ετοϓϫʔυͷ͕ ߴ͘ͳΓ͕ͪ • සͷ͍ޠ
ੜͮ͠Β͍
0WFSWJFX (PBMೖྗൃͱରԠͨ͠༰ޠΛଟؚ͘ΉΑ͏ͳԠจͷੜ 1SPQPTBM ೖྗจ 9 ग़ྗจ : ͱͨ͠ͱ͖ɼ • ग़ྗจͱԠจͷτϐοΫͷҰ؏ੑ
!"# $ % & , $ % ( • ग़ྗจͱԠจͷҙຯతྨࣅ !"# )#* & , )#* ( Λߟྀͨ͠ԠΛੜ͢ΔΑ͏ʹॏΈ͚͠ͳ͕Βσίʔυ͢Δ
$POUFOUT *OUSPEVDUJPO .FUIPET &YQFSJNFOUT $PODMVTJPO
"QQSPBDI ØτϐοΫͷҰ؏ੑ͕ߴ͘ͳΔΑ͏ʹग़ྗʢτϐοΫ੍ʣ Øग़ྗͱԠͷྨࣅ͕ߴ͘ͳΔΑ͏ʹग़ྗʢҙຯ੍ʣ τϐοΫྨࣅ ҙຯతྨࣅ
࣮ࡍͷσίʔυ୯ޠ୯ҐͰஞ࣍తʹग़ྗΛߦ͏ͨΊɼ τϐοΫ੍ɾҙຯ੍ʹ༻͍ΔείΞҎԼͷͭͷ݅ʀ • σίʔυ్தͷෆશͳจΛར༻Մೳ • ܭࢉίετ͕͍ Λຬͨ͢ඞཁ͕͋Δ %FDPEJOHXJUI%JTUSJCVUJPOBM $POTUSBJOUT*O
! " # ͷਪఆʹ )..-%"ϞσϧΛ࠾༻ จதͷ֤୯ޠʹ͍ͭͯɼͦͷ୯ޠ͕ • τϐοΫ 5Ͱ͋Δ֬ •
τϐοΫϫʔυͰ͋Δ֬ ͷੵΛͱΓɼτϐοΫϫʔυͷʢظʣͰॏΈ͚ฏۉ τϐοΫྨࣅ
! " # ͷਪఆʹ )..-%"ϞσϧΛ࠾༻ ཁ͢Δʹɿ୯ޠ͝ͱͷτϐοΫਪఆ݁ՌΛ͠߹Θͤ ˠσίʔυதͷෆશͳจʹஞ࣍తʹద༻Մೳ ྨࣅؔ ∆ !("|'
, ! ) ' ʹ୯७ͳυοτੵΛ࠾༻ τϐοΫྨࣅ
จͷࢄදݱ !"# $ Λ "SPSBΒ <>ͷख๏Λ༻͍ͯಘΔɿ ୯ޠͷϢχάϥϜ֬ % &
ύϥϝʔλ ' ୯ޠࢄදݱ () Λ༻͍ͯɼ(* = ∑ )∈* . ./0 ) () Λܭࢉ (* ͔ΒୈҰओ ཁૉΛҾ͘ ୈҰओػೳޠͷӨڹ͕େ͖͍ʢΒ͍͠ʣ ࣮ࡍʹ܇࿅ίʔύεΛ༻͍ͯओੳΛࣄલʹߦ͍ɼ σίʔυ࣌ʹͦͷ݁ՌΛར༻ʢίʔυΛݟΔݶΓʣ ҙຯతྨࣅ .0 7 27,- 2 .1 2 1 1 0 .1, A .
จͷࢄදݱ !"# $ Λ "SPSBΒ <>ͷख๏Λ༻͍ͯಘΔɿ ཁ͢Δʹɿ୯ޠ͝ͱͷࢄදݱͷॏΈ͖ฏۉ ˠσίʔυ࣌ʹஞ࣍తʹૉૣ͘ܭࢉՄೳ ྨࣅؔ %
&' , &) ʹ୯७ͳυοτੵΛ࠾༻ ҙຯతྨࣅ .0 7 27,- 2 .1 2 1 1 0 .1, A .
$POUFOUT *OUSPEVDUJPO .FUIPET &YQFSJNFOUT $PODMVTJPO
4FUUJOHT • σʔληοτ ܇࿅σʔλɿ0QFO4VCUJUMFTʢ.VSQBJSTʣ ςετσʔλɿ$PSOFMM.PWJF%JBMPHVF$PSQVTʢQBJST ʣ • ϕʔεϥΠϯ ..*Ԡͱೖྗͷ૬ޓใྔΛ࠷େԽ͢ΔϞσϧ !
= argmax( log + ! , + - 5"4FR4FRτϐοΫਪఆ݁ՌΛ "UUFOUJPOܭࢉʹ༻͍ΔϞσϧ
3FTVMUT "VUPNBUJD&WBMVBUJPO #-&6Λେ͖͘Լ͛ͣʹԠͷଟ༷ੑΛ্ ετοϓϫʔυ੍ʹޮՌ͋Γ
3FTVMUT )VNBO ਓखධՁͰԠͷΒ͠͞ΛଛͶͣʹ༰ͷॆ্࣮͕
$POUFOUT *OUSPEVDUJPO .FUIPET &YQFSJNFOUT $PODMVTJPO
$PODMVTJPO Ø ࢄදݱͷܗͰग़ྗͱԠͷτϐοΫྨࣅͱҙຯతྨࣅΛ ࢉग़͠ɼσίʔυ࣌ͷ੍ͱͯ͠ΈࠐΜͩ Ø ԠͷΒ͠͞ΛԼ͛Δ͜ͱͳ͘ɼଟ༷ੑΛ্ͤͨ͞