Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Generating More Interesting Responses in Neural...
Search
onizuka laboratory
December 18, 2018
Research
0
100
Generating More Interesting Responses in Neural Conversation Models with Distributional Constraints
弊研究室で行なったEMNLP2018読み会の発表資料です。
onizuka laboratory
December 18, 2018
Tweet
Share
More Decks by onizuka laboratory
See All by onizuka laboratory
Phrase-Based & Neural Unsupervised Machine Translation
onilab
0
120
Tell-and-Answer: Towards Explainable Visual Question Answering using Attributes and Captions
onilab
0
72
Card-660: A Reliable Evaluation Framework for Rare Word Representation Models
onilab
0
37
A Word-Complexity Lexicon and A Neural Readability Ranking Model for Lexical Simplification
onilab
0
130
Integrating Transformer and Paraphrase Rules for Sentence Simplification
onilab
0
61
An Auto-Encoder Matching Model for Learning Utterance-Level Semantic Dependency in Dialogue Generation
onilab
0
57
Modeling Multi-turn Conversation with Deep Utterance Aggregation
onilab
0
98
Learning Semantic Sentence Embeddings using Pair-wise Discriminator
onilab
0
120
SGM: Sequence Generation Model for Multi-Label Classification
onilab
0
80
Other Decks in Research
See All in Research
SkySense V2: A Unified Foundation Model for Multi-modal Remote Sensing
satai
3
500
Self-Hosted WebAssembly Runtime for Runtime-Neutral Checkpoint/Restore in Edge–Cloud Continuum
chikuwait
0
340
Upgrading Multi-Agent Pathfinding for the Real World
kei18
0
230
Collective Predictive Coding and World Models in LLMs: A System 0/1/2/3 Perspective on Hierarchical Physical AI (IEEE SII 2026 Plenary Talk)
tanichu
1
250
Combining Deep Learning and Street View Imagery to Map Smallholder Crop Types
satai
3
580
競合や要望に流されない─B2B SaaSでミニマム要件を決めるリアルな取り組み / Don't be swayed by competitors or requests - A real effort to determine minimum requirements for B2B SaaS
kaminashi
0
760
2026.01ウェビナー資料
elith
0
220
教師あり学習と強化学習で作る 最強の数学特化LLM
analokmaus
2
890
さまざまなAgent FrameworkとAIエージェントの評価
ymd65536
1
420
空間音響処理における物理法則に基づく機械学習
skoyamalab
0
190
20年前に50代だった人たちの今
hysmrk
0
140
OWASP KansaiDAY 2025.09_文系OSINTハンズオン
owaspkansai
0
110
Featured
See All Featured
GraphQLの誤解/rethinking-graphql
sonatard
74
11k
How to Ace a Technical Interview
jacobian
281
24k
Amusing Abliteration
ianozsvald
0
100
Fashionably flexible responsive web design (full day workshop)
malarkey
408
66k
Dominate Local Search Results - an insider guide to GBP, reviews, and Local SEO
greggifford
PRO
0
79
Jess Joyce - The Pitfalls of Following Frameworks
techseoconnect
PRO
1
67
A brief & incomplete history of UX Design for the World Wide Web: 1989–2019
jct
1
300
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
234
17k
Intergalactic Javascript Robots from Outer Space
tanoku
273
27k
Navigating Team Friction
lara
192
16k
Building Experiences: Design Systems, User Experience, and Full Site Editing
marktimemedia
0
410
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
231
22k
Transcript
&./-1:0.*,"* UI%FD (FOFSBUJOH .PSF*OUFSFTUJOH3FTQPOTFT JO/FVSBM$POWFSTBUJPO.PEFMT XJUI %JTUSJCVUJPOBM$POTUSBJOUT (3"%6"5&4$)00-PG*/'03."5*0/4$*&/$&BOE5&$)/0-0(: 04","6/*7
+6/:"5",":"."
1BQFS*/'0 "TIVUPTI #BIFUJ "MBO3JUUFS +JXFJ -J BOE#JMM%PMBO l(FOFSBUJOH.PSF*OUFSFTUJOH3FTQPOTFTJO/FVSBM $POWFSTBUJPO.PEFMTXJUI%JTUSJCVUJPOBM$POTUSBJOUTz *O1SPDFFEJOHTPG&./-1
ೖྗൃͱͷτϐοΫҰ؏ੑҙຯతྨࣅ͕ߴ͍ԠจΛੜ͢ΔΑ͏ʹ ੍Λ͔͚ͯσίʔυ͢Δ͜ͱͰɼ%VMM3FTQPOTFʹରॲͨ͠Α
$POUFOUT *OUSPEVDUJPO .FUIPET &YQFSJNFOUT $PODMVTJPO
*TTVF Ø࠷ਪఆʹΑΔ UFYUUPUFYUੜϞσϧೖྗจͱग़ྗจ͕ ΄΅ҰରҰରԠͷλεΫʢػց༁ͳͲʣͰ༗༻ ØԠੜଟରଟͷͨΊ࠷ਪఆͰʮͦ͏Ͱ͢Ͷʯʮ͍ʯ ͳͲͷ EVMMSFTQPOTFΛੜ͕ͪ͠
*TTVF ØަࠩΤϯτϩϐʔଛࣦ ʹΑΔԠੜ ʹ͓͚Δσίʔυྫ • τϐοΫϫʔυʹൺɼ ετοϓϫʔυͷ͕ ߴ͘ͳΓ͕ͪ • සͷ͍ޠ
ੜͮ͠Β͍
0WFSWJFX (PBMೖྗൃͱରԠͨ͠༰ޠΛଟؚ͘ΉΑ͏ͳԠจͷੜ 1SPQPTBM ೖྗจ 9 ग़ྗจ : ͱͨ͠ͱ͖ɼ • ग़ྗจͱԠจͷτϐοΫͷҰ؏ੑ
!"# $ % & , $ % ( • ग़ྗจͱԠจͷҙຯతྨࣅ !"# )#* & , )#* ( Λߟྀͨ͠ԠΛੜ͢ΔΑ͏ʹॏΈ͚͠ͳ͕Βσίʔυ͢Δ
$POUFOUT *OUSPEVDUJPO .FUIPET &YQFSJNFOUT $PODMVTJPO
"QQSPBDI ØτϐοΫͷҰ؏ੑ͕ߴ͘ͳΔΑ͏ʹग़ྗʢτϐοΫ੍ʣ Øग़ྗͱԠͷྨࣅ͕ߴ͘ͳΔΑ͏ʹग़ྗʢҙຯ੍ʣ τϐοΫྨࣅ ҙຯతྨࣅ
࣮ࡍͷσίʔυ୯ޠ୯ҐͰஞ࣍తʹग़ྗΛߦ͏ͨΊɼ τϐοΫ੍ɾҙຯ੍ʹ༻͍ΔείΞҎԼͷͭͷ݅ʀ • σίʔυ్தͷෆશͳจΛར༻Մೳ • ܭࢉίετ͕͍ Λຬͨ͢ඞཁ͕͋Δ %FDPEJOHXJUI%JTUSJCVUJPOBM $POTUSBJOUT*O
! " # ͷਪఆʹ )..-%"ϞσϧΛ࠾༻ จதͷ֤୯ޠʹ͍ͭͯɼͦͷ୯ޠ͕ • τϐοΫ 5Ͱ͋Δ֬ •
τϐοΫϫʔυͰ͋Δ֬ ͷੵΛͱΓɼτϐοΫϫʔυͷʢظʣͰॏΈ͚ฏۉ τϐοΫྨࣅ
! " # ͷਪఆʹ )..-%"ϞσϧΛ࠾༻ ཁ͢Δʹɿ୯ޠ͝ͱͷτϐοΫਪఆ݁ՌΛ͠߹Θͤ ˠσίʔυதͷෆશͳจʹஞ࣍తʹద༻Մೳ ྨࣅؔ ∆ !("|'
, ! ) ' ʹ୯७ͳυοτੵΛ࠾༻ τϐοΫྨࣅ
จͷࢄදݱ !"# $ Λ "SPSBΒ <>ͷख๏Λ༻͍ͯಘΔɿ ୯ޠͷϢχάϥϜ֬ % &
ύϥϝʔλ ' ୯ޠࢄදݱ () Λ༻͍ͯɼ(* = ∑ )∈* . ./0 ) () Λܭࢉ (* ͔ΒୈҰओ ཁૉΛҾ͘ ୈҰओػೳޠͷӨڹ͕େ͖͍ʢΒ͍͠ʣ ࣮ࡍʹ܇࿅ίʔύεΛ༻͍ͯओੳΛࣄલʹߦ͍ɼ σίʔυ࣌ʹͦͷ݁ՌΛར༻ʢίʔυΛݟΔݶΓʣ ҙຯతྨࣅ .0 7 27,- 2 .1 2 1 1 0 .1, A .
จͷࢄදݱ !"# $ Λ "SPSBΒ <>ͷख๏Λ༻͍ͯಘΔɿ ཁ͢Δʹɿ୯ޠ͝ͱͷࢄදݱͷॏΈ͖ฏۉ ˠσίʔυ࣌ʹஞ࣍తʹૉૣ͘ܭࢉՄೳ ྨࣅؔ %
&' , &) ʹ୯७ͳυοτੵΛ࠾༻ ҙຯతྨࣅ .0 7 27,- 2 .1 2 1 1 0 .1, A .
$POUFOUT *OUSPEVDUJPO .FUIPET &YQFSJNFOUT $PODMVTJPO
4FUUJOHT • σʔληοτ ܇࿅σʔλɿ0QFO4VCUJUMFTʢ.VSQBJSTʣ ςετσʔλɿ$PSOFMM.PWJF%JBMPHVF$PSQVTʢQBJST ʣ • ϕʔεϥΠϯ ..*Ԡͱೖྗͷ૬ޓใྔΛ࠷େԽ͢ΔϞσϧ !
= argmax( log + ! , + - 5"4FR4FRτϐοΫਪఆ݁ՌΛ "UUFOUJPOܭࢉʹ༻͍ΔϞσϧ
3FTVMUT "VUPNBUJD&WBMVBUJPO #-&6Λେ͖͘Լ͛ͣʹԠͷଟ༷ੑΛ্ ετοϓϫʔυ੍ʹޮՌ͋Γ
3FTVMUT )VNBO ਓखධՁͰԠͷΒ͠͞ΛଛͶͣʹ༰ͷॆ্࣮͕
$POUFOUT *OUSPEVDUJPO .FUIPET &YQFSJNFOUT $PODMVTJPO
$PODMVTJPO Ø ࢄදݱͷܗͰग़ྗͱԠͷτϐοΫྨࣅͱҙຯతྨࣅΛ ࢉग़͠ɼσίʔυ࣌ͷ੍ͱͯ͠ΈࠐΜͩ Ø ԠͷΒ͠͞ΛԼ͛Δ͜ͱͳ͘ɼଟ༷ੑΛ্ͤͨ͞