Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Generating More Interesting Responses in Neural...
Search
onizuka laboratory
December 18, 2018
Research
0
100
Generating More Interesting Responses in Neural Conversation Models with Distributional Constraints
弊研究室で行なったEMNLP2018読み会の発表資料です。
onizuka laboratory
December 18, 2018
Tweet
Share
More Decks by onizuka laboratory
See All by onizuka laboratory
Phrase-Based & Neural Unsupervised Machine Translation
onilab
0
120
Tell-and-Answer: Towards Explainable Visual Question Answering using Attributes and Captions
onilab
0
72
Card-660: A Reliable Evaluation Framework for Rare Word Representation Models
onilab
0
37
A Word-Complexity Lexicon and A Neural Readability Ranking Model for Lexical Simplification
onilab
0
130
Integrating Transformer and Paraphrase Rules for Sentence Simplification
onilab
0
61
An Auto-Encoder Matching Model for Learning Utterance-Level Semantic Dependency in Dialogue Generation
onilab
0
57
Modeling Multi-turn Conversation with Deep Utterance Aggregation
onilab
0
98
Learning Semantic Sentence Embeddings using Pair-wise Discriminator
onilab
0
120
SGM: Sequence Generation Model for Multi-Label Classification
onilab
0
80
Other Decks in Research
See All in Research
A History of Approximate Nearest Neighbor Search from an Applications Perspective
matsui_528
1
160
存立危機事態の再検討
jimboken
0
240
Satellites Reveal Mobility: A Commuting Origin-destination Flow Generator for Global Cities
satai
3
510
CoRL2025速報
rpc
4
4.2k
Pythonでジオを使い倒そう! 〜それとFOSS4G Hiroshima 2026のご紹介を少し〜
wata909
0
1.3k
An Open and Reproducible Deep Research Agent for Long-Form Question Answering
ikuyamada
0
280
Attaques quantiques sur Bitcoin : comment se protéger ?
rlifchitz
0
140
ドメイン知識がない領域での自然言語処理の始め方
hargon24
1
240
ブレグマン距離最小化に基づくリース表現量推定:バイアス除去学習の統一理論
masakat0
0
140
ロボット学習における大規模検索技術の展開と応用
denkiwakame
1
210
学習型データ構造:機械学習を内包する新しいデータ構造の設計と解析
matsui_528
6
3.2k
湯村研究室の紹介2025 / yumulab2025
yumulab
0
300
Featured
See All Featured
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
27k
Skip the Path - Find Your Career Trail
mkilby
0
59
Agile Actions for Facilitating Distributed Teams - ADO2019
mkilby
0
120
Google's AI Overviews - The New Search
badams
0
910
SEO in 2025: How to Prepare for the Future of Search
ipullrank
3
3.3k
Abbi's Birthday
coloredviolet
1
4.8k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
12
1.4k
Bash Introduction
62gerente
615
210k
Marketing to machines
jonoalderson
1
4.6k
sira's awesome portfolio website redesign presentation
elsirapls
0
150
How To Speak Unicorn (iThemes Webinar)
marktimemedia
1
380
Unsuck your backbone
ammeep
671
58k
Transcript
&./-1:0.*,"* UI%FD (FOFSBUJOH .PSF*OUFSFTUJOH3FTQPOTFT JO/FVSBM$POWFSTBUJPO.PEFMT XJUI %JTUSJCVUJPOBM$POTUSBJOUT (3"%6"5&4$)00-PG*/'03."5*0/4$*&/$&BOE5&$)/0-0(: 04","6/*7
+6/:"5",":"."
1BQFS*/'0 "TIVUPTI #BIFUJ "MBO3JUUFS +JXFJ -J BOE#JMM%PMBO l(FOFSBUJOH.PSF*OUFSFTUJOH3FTQPOTFTJO/FVSBM $POWFSTBUJPO.PEFMTXJUI%JTUSJCVUJPOBM$POTUSBJOUTz *O1SPDFFEJOHTPG&./-1
ೖྗൃͱͷτϐοΫҰ؏ੑҙຯతྨࣅ͕ߴ͍ԠจΛੜ͢ΔΑ͏ʹ ੍Λ͔͚ͯσίʔυ͢Δ͜ͱͰɼ%VMM3FTQPOTFʹରॲͨ͠Α
$POUFOUT *OUSPEVDUJPO .FUIPET &YQFSJNFOUT $PODMVTJPO
*TTVF Ø࠷ਪఆʹΑΔ UFYUUPUFYUੜϞσϧೖྗจͱग़ྗจ͕ ΄΅ҰରҰରԠͷλεΫʢػց༁ͳͲʣͰ༗༻ ØԠੜଟରଟͷͨΊ࠷ਪఆͰʮͦ͏Ͱ͢Ͷʯʮ͍ʯ ͳͲͷ EVMMSFTQPOTFΛੜ͕ͪ͠
*TTVF ØަࠩΤϯτϩϐʔଛࣦ ʹΑΔԠੜ ʹ͓͚Δσίʔυྫ • τϐοΫϫʔυʹൺɼ ετοϓϫʔυͷ͕ ߴ͘ͳΓ͕ͪ • සͷ͍ޠ
ੜͮ͠Β͍
0WFSWJFX (PBMೖྗൃͱରԠͨ͠༰ޠΛଟؚ͘ΉΑ͏ͳԠจͷੜ 1SPQPTBM ೖྗจ 9 ग़ྗจ : ͱͨ͠ͱ͖ɼ • ग़ྗจͱԠจͷτϐοΫͷҰ؏ੑ
!"# $ % & , $ % ( • ग़ྗจͱԠจͷҙຯతྨࣅ !"# )#* & , )#* ( Λߟྀͨ͠ԠΛੜ͢ΔΑ͏ʹॏΈ͚͠ͳ͕Βσίʔυ͢Δ
$POUFOUT *OUSPEVDUJPO .FUIPET &YQFSJNFOUT $PODMVTJPO
"QQSPBDI ØτϐοΫͷҰ؏ੑ͕ߴ͘ͳΔΑ͏ʹग़ྗʢτϐοΫ੍ʣ Øग़ྗͱԠͷྨࣅ͕ߴ͘ͳΔΑ͏ʹग़ྗʢҙຯ੍ʣ τϐοΫྨࣅ ҙຯతྨࣅ
࣮ࡍͷσίʔυ୯ޠ୯ҐͰஞ࣍తʹग़ྗΛߦ͏ͨΊɼ τϐοΫ੍ɾҙຯ੍ʹ༻͍ΔείΞҎԼͷͭͷ݅ʀ • σίʔυ్தͷෆશͳจΛར༻Մೳ • ܭࢉίετ͕͍ Λຬͨ͢ඞཁ͕͋Δ %FDPEJOHXJUI%JTUSJCVUJPOBM $POTUSBJOUT*O
! " # ͷਪఆʹ )..-%"ϞσϧΛ࠾༻ จதͷ֤୯ޠʹ͍ͭͯɼͦͷ୯ޠ͕ • τϐοΫ 5Ͱ͋Δ֬ •
τϐοΫϫʔυͰ͋Δ֬ ͷੵΛͱΓɼτϐοΫϫʔυͷʢظʣͰॏΈ͚ฏۉ τϐοΫྨࣅ
! " # ͷਪఆʹ )..-%"ϞσϧΛ࠾༻ ཁ͢Δʹɿ୯ޠ͝ͱͷτϐοΫਪఆ݁ՌΛ͠߹Θͤ ˠσίʔυதͷෆશͳจʹஞ࣍తʹద༻Մೳ ྨࣅؔ ∆ !("|'
, ! ) ' ʹ୯७ͳυοτੵΛ࠾༻ τϐοΫྨࣅ
จͷࢄදݱ !"# $ Λ "SPSBΒ <>ͷख๏Λ༻͍ͯಘΔɿ ୯ޠͷϢχάϥϜ֬ % &
ύϥϝʔλ ' ୯ޠࢄදݱ () Λ༻͍ͯɼ(* = ∑ )∈* . ./0 ) () Λܭࢉ (* ͔ΒୈҰओ ཁૉΛҾ͘ ୈҰओػೳޠͷӨڹ͕େ͖͍ʢΒ͍͠ʣ ࣮ࡍʹ܇࿅ίʔύεΛ༻͍ͯओੳΛࣄલʹߦ͍ɼ σίʔυ࣌ʹͦͷ݁ՌΛར༻ʢίʔυΛݟΔݶΓʣ ҙຯతྨࣅ .0 7 27,- 2 .1 2 1 1 0 .1, A .
จͷࢄදݱ !"# $ Λ "SPSBΒ <>ͷख๏Λ༻͍ͯಘΔɿ ཁ͢Δʹɿ୯ޠ͝ͱͷࢄදݱͷॏΈ͖ฏۉ ˠσίʔυ࣌ʹஞ࣍తʹૉૣ͘ܭࢉՄೳ ྨࣅؔ %
&' , &) ʹ୯७ͳυοτੵΛ࠾༻ ҙຯతྨࣅ .0 7 27,- 2 .1 2 1 1 0 .1, A .
$POUFOUT *OUSPEVDUJPO .FUIPET &YQFSJNFOUT $PODMVTJPO
4FUUJOHT • σʔληοτ ܇࿅σʔλɿ0QFO4VCUJUMFTʢ.VSQBJSTʣ ςετσʔλɿ$PSOFMM.PWJF%JBMPHVF$PSQVTʢQBJST ʣ • ϕʔεϥΠϯ ..*Ԡͱೖྗͷ૬ޓใྔΛ࠷େԽ͢ΔϞσϧ !
= argmax( log + ! , + - 5"4FR4FRτϐοΫਪఆ݁ՌΛ "UUFOUJPOܭࢉʹ༻͍ΔϞσϧ
3FTVMUT "VUPNBUJD&WBMVBUJPO #-&6Λେ͖͘Լ͛ͣʹԠͷଟ༷ੑΛ্ ετοϓϫʔυ੍ʹޮՌ͋Γ
3FTVMUT )VNBO ਓखධՁͰԠͷΒ͠͞ΛଛͶͣʹ༰ͷॆ্࣮͕
$POUFOUT *OUSPEVDUJPO .FUIPET &YQFSJNFOUT $PODMVTJPO
$PODMVTJPO Ø ࢄදݱͷܗͰग़ྗͱԠͷτϐοΫྨࣅͱҙຯతྨࣅΛ ࢉग़͠ɼσίʔυ࣌ͷ੍ͱͯ͠ΈࠐΜͩ Ø ԠͷΒ͠͞ΛԼ͛Δ͜ͱͳ͘ɼଟ༷ੑΛ্ͤͨ͞