Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Tell-and-Answer: Towards Explainable Visual Que...
Search
onizuka laboratory
December 18, 2018
Research
0
71
Tell-and-Answer: Towards Explainable Visual Question Answering using Attributes and Captions
弊研究室で行なったEMNLP2018読み会の発表資料です。
onizuka laboratory
December 18, 2018
Tweet
Share
More Decks by onizuka laboratory
See All by onizuka laboratory
Phrase-Based & Neural Unsupervised Machine Translation
onilab
0
110
Card-660: A Reliable Evaluation Framework for Rare Word Representation Models
onilab
0
33
A Word-Complexity Lexicon and A Neural Readability Ranking Model for Lexical Simplification
onilab
0
120
Integrating Transformer and Paraphrase Rules for Sentence Simplification
onilab
0
59
An Auto-Encoder Matching Model for Learning Utterance-Level Semantic Dependency in Dialogue Generation
onilab
0
55
Generating More Interesting Responses in Neural Conversation Models with Distributional Constraints
onilab
0
100
Modeling Multi-turn Conversation with Deep Utterance Aggregation
onilab
0
95
Learning Semantic Sentence Embeddings using Pair-wise Discriminator
onilab
0
120
SGM: Sequence Generation Model for Multi-Label Classification
onilab
0
77
Other Decks in Research
See All in Research
SSII2025 [SS1] レンズレスカメラ
ssii
PRO
2
950
電力システム最適化入門
mickey_kubo
1
640
Collaborative Development of Foundation Models at Japanese Academia
odashi
2
560
SI-D案内資料_京都文教大学
ryojitakeuchi1116
0
1.6k
生成的推薦の人気バイアスの分析:暗記の観点から / JSAI2025
upura
0
180
Towards a More Efficient Reasoning LLM: AIMO2 Solution Summary and Introduction to Fast-Math Models
analokmaus
2
230
ウッドスタックチャン:木材を用いた小型エージェントロボットの開発と印象評価 / ec75-sato
yumulab
1
410
Large Language Model Agent: A Survey on Methodology, Applications and Challenges
shunk031
12
8.1k
線形判別分析のPU学習による朝日歌壇短歌の分析
masakat0
0
130
NLP2025参加報告会 LT資料
hargon24
1
320
定性データ、どう活かす? 〜定性データのための分析基盤、はじめました〜 / How to utilize qualitative data? ~We have launched an analysis platform for qualitative data~
kaminashi
6
1k
心理言語学の視点から再考する言語モデルの学習過程
chemical_tree
2
350
Featured
See All Featured
Large-scale JavaScript Application Architecture
addyosmani
512
110k
Building a Modern Day E-commerce SEO Strategy
aleyda
42
7.3k
Being A Developer After 40
akosma
90
590k
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
3.9k
Statistics for Hackers
jakevdp
799
220k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
667
120k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
20
1.3k
Visualization
eitanlees
146
16k
Navigating Team Friction
lara
187
15k
Git: the NoSQL Database
bkeepers
PRO
430
65k
Rails Girls Zürich Keynote
gr2m
94
14k
BBQ
matthewcrist
89
9.7k
Transcript
Tell-and-Answer: Towards Explainable Visual Question Answering using Attributes
and Captions Q. Li, J. Fu, D. Yu et al. EMNLP 2018 20181218
VQA CNN RNN ;* end-to-end !" → <2AE+H
C0 A9#5 2 4G' C0 <2I!".(AE)= >'1 %FI6?B,?:$D/-8 3@ VQA end-to-end &7 2 4G' <2AE)= 1
Visual Q&A Q: where is
the man swinging the racket? A: tennis court 2
Visual Q&A Q: what kind
of drink is in the glass? A: water 3
Visual Q&A Q: what is
walking next to the bus? A: cow 4
Visual Q&A Q: does the
man need a haircut? A: yes 5
Tell-and-Answer: Towards Explainable Visual Question Answering using Attributes and
Captions 6
"# where is the man swinging
the racket? yes no water tennis court ⋮ CNN RNN $ ! 7
7# 9+ D >(. <& D (CB D *
"6* D -2,4 end-to-end 2 3A $% @8181;?':/4-2 0),4 =C !581;?B 8
Tell-and-Answer: Towards Explainable Visual Question Answering using Attributes and
Captions 9
( ,# &+ Ø#'! Ø#(" ) ,( %*&$ ! Ø'
ver. Ø( ver. Ø ver. ( ) 10
11
@,→H3L0 !%$ %)=1M ;F$ % @, I87 H3L0 ResNet152
'#(' .? ØBAK6 ED "&'&( .?9 /$ % -NC> .? G+ ;F$ % cos N*2 J17 H3L0 cos N*2.? 5:4< H3)= 12
/ →3*) / ResNet152 LSTM 1 .%0
1', (e.g. BLEU) 4") .%) 2$5! cos 6# (+&- / 3*).% 13
7*='?8.-?9(-→64 #2(> 8.-9(- LSTM !" Ø LSTM &7!!)<%/
;5 $5') 3: softmax ,0+1 64#2 14
Tell-and-Answer: Towards Explainable Visual Question Answering using Attributes and
Captions 15
-VQA-real Ø1 & 3 ,1 10
)', *!#-min(#)*+,-. /010-/ 2),2 ,-.345 6 , 1) Ø%)' 10 " 3 ( $) + * 16
VQA vs.
17
vs.
18
VQA *!-# +$ .% -#"0,)( 0'/ Ø& -#" Ø
-#" ØNULL 1 -# $ 19
* '" Ø+! & )%
Ø+! & )% Ø+! & )% Ø+! & )% $ ,# - +! ( VQA & 20
tennis, ball, man, racket, hit, court, play, player,
swing, hold a man holding a tennis racket on a tennis court. tennis court & Q: where is the man swinging the racket? A: tennis court 21
bicycle, man, sit, eat, bike, look, outside, food,
person, table a man sitting at a table with a plate of food. beer & Q: what kind of drink is in the glass? A: water 22
street, bus, cow, city, walk, car, drive, stand,
road, white a cow that is walking in the street. car & Q: what is walking next to the bus? A: cow 23
woman, bear, teddy, hold, sit, glass, animal, large,
lady a woman holding a sandwich in her hands. yes & Q: does the man need a haircut? A: yes 24
30%
65% yes/no 80% 25
VQA 26
Tell-and-Answer: Towards Explainable Visual Question Answering using Attributes and
Captions 27
>1=9 5 2 3B# VQA #2 Ø7!6*A-"?&.% / Ø7!
<+; 0',4:(C $ 8 VQA =@ ) = 28