Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Tell-and-Answer: Towards Explainable Visual Que...
Search
onizuka laboratory
December 18, 2018
Research
0
72
Tell-and-Answer: Towards Explainable Visual Question Answering using Attributes and Captions
弊研究室で行なったEMNLP2018読み会の発表資料です。
onizuka laboratory
December 18, 2018
Tweet
Share
More Decks by onizuka laboratory
See All by onizuka laboratory
Phrase-Based & Neural Unsupervised Machine Translation
onilab
0
120
Card-660: A Reliable Evaluation Framework for Rare Word Representation Models
onilab
0
36
A Word-Complexity Lexicon and A Neural Readability Ranking Model for Lexical Simplification
onilab
0
130
Integrating Transformer and Paraphrase Rules for Sentence Simplification
onilab
0
61
An Auto-Encoder Matching Model for Learning Utterance-Level Semantic Dependency in Dialogue Generation
onilab
0
57
Generating More Interesting Responses in Neural Conversation Models with Distributional Constraints
onilab
0
100
Modeling Multi-turn Conversation with Deep Utterance Aggregation
onilab
0
98
Learning Semantic Sentence Embeddings using Pair-wise Discriminator
onilab
0
120
SGM: Sequence Generation Model for Multi-Label Classification
onilab
0
80
Other Decks in Research
See All in Research
思いつきが武器になる:研究というゲームを始めよう / Ideas Are Your Equipments : Let the Game of Research Begin!
ks91
PRO
0
100
製造業主導型経済からサービス経済化における中間層形成メカニズムのパラダイムシフト
yamotty
0
260
Nullspace MPC
mizuhoaoki
1
480
CoRL2025速報
rpc
2
3.5k
AWSで実現した大規模日本語VLM学習用データセット "MOMIJI" 構築パイプライン/buiding-momiji
studio_graph
2
1k
SREのためのテレメトリー技術の探究 / Telemetry for SRE
yuukit
13
2.5k
さまざまなAgent FrameworkとAIエージェントの評価
ymd65536
1
350
EcoWikiRS: Learning Ecological Representation of Satellite Images from Weak Supervision with Species Observation and Wikipedia
satai
3
430
When Learned Data Structures Meet Computer Vision
matsui_528
1
1.4k
AI in Enterprises - Java and Open Source to the Rescue
ivargrimstad
0
1k
競合や要望に流されない─B2B SaaSでミニマム要件を決めるリアルな取り組み / Don't be swayed by competitors or requests - A real effort to determine minimum requirements for B2B SaaS
kaminashi
0
240
離散凸解析に基づく予測付き離散最適化手法 (IBIS '25)
taihei_oki
PRO
1
620
Featured
See All Featured
GraphQLの誤解/rethinking-graphql
sonatard
73
11k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
141
34k
Faster Mobile Websites
deanohume
310
31k
The Language of Interfaces
destraynor
162
25k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
128
54k
StorybookのUI Testing Handbookを読んだ
zakiyama
31
6.4k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
122
21k
4 Signs Your Business is Dying
shpigford
186
22k
Keith and Marios Guide to Fast Websites
keithpitt
413
23k
Optimizing for Happiness
mojombo
379
70k
Building Better People: How to give real-time feedback that sticks.
wjessup
370
20k
Become a Pro
speakerdeck
PRO
31
5.7k
Transcript
Tell-and-Answer: Towards Explainable Visual Question Answering using Attributes
and Captions Q. Li, J. Fu, D. Yu et al. EMNLP 2018 20181218
VQA CNN RNN ;* end-to-end !" → <2AE+H
C0 A9#5 2 4G' C0 <2I!".(AE)= >'1 %FI6?B,?:$D/-8 3@ VQA end-to-end &7 2 4G' <2AE)= 1
Visual Q&A Q: where is
the man swinging the racket? A: tennis court 2
Visual Q&A Q: what kind
of drink is in the glass? A: water 3
Visual Q&A Q: what is
walking next to the bus? A: cow 4
Visual Q&A Q: does the
man need a haircut? A: yes 5
Tell-and-Answer: Towards Explainable Visual Question Answering using Attributes and
Captions 6
"# where is the man swinging
the racket? yes no water tennis court ⋮ CNN RNN $ ! 7
7# 9+ D >(. <& D (CB D *
"6* D -2,4 end-to-end 2 3A $% @8181;?':/4-2 0),4 =C !581;?B 8
Tell-and-Answer: Towards Explainable Visual Question Answering using Attributes and
Captions 9
( ,# &+ Ø#'! Ø#(" ) ,( %*&$ ! Ø'
ver. Ø( ver. Ø ver. ( ) 10
11
@,→H3L0 !%$ %)=1M ;F$ % @, I87 H3L0 ResNet152
'#(' .? ØBAK6 ED "&'&( .?9 /$ % -NC> .? G+ ;F$ % cos N*2 J17 H3L0 cos N*2.? 5:4< H3)= 12
/ →3*) / ResNet152 LSTM 1 .%0
1', (e.g. BLEU) 4") .%) 2$5! cos 6# (+&- / 3*).% 13
7*='?8.-?9(-→64 #2(> 8.-9(- LSTM !" Ø LSTM &7!!)<%/
;5 $5') 3: softmax ,0+1 64#2 14
Tell-and-Answer: Towards Explainable Visual Question Answering using Attributes and
Captions 15
-VQA-real Ø1 & 3 ,1 10
)', *!#-min(#)*+,-. /010-/ 2),2 ,-.345 6 , 1) Ø%)' 10 " 3 ( $) + * 16
VQA vs.
17
vs.
18
VQA *!-# +$ .% -#"0,)( 0'/ Ø& -#" Ø
-#" ØNULL 1 -# $ 19
* '" Ø+! & )%
Ø+! & )% Ø+! & )% Ø+! & )% $ ,# - +! ( VQA & 20
tennis, ball, man, racket, hit, court, play, player,
swing, hold a man holding a tennis racket on a tennis court. tennis court & Q: where is the man swinging the racket? A: tennis court 21
bicycle, man, sit, eat, bike, look, outside, food,
person, table a man sitting at a table with a plate of food. beer & Q: what kind of drink is in the glass? A: water 22
street, bus, cow, city, walk, car, drive, stand,
road, white a cow that is walking in the street. car & Q: what is walking next to the bus? A: cow 23
woman, bear, teddy, hold, sit, glass, animal, large,
lady a woman holding a sandwich in her hands. yes & Q: does the man need a haircut? A: yes 24
30%
65% yes/no 80% 25
VQA 26
Tell-and-Answer: Towards Explainable Visual Question Answering using Attributes and
Captions 27
>1=9 5 2 3B# VQA #2 Ø7!6*A-"?&.% / Ø7!
<+; 0',4:(C $ 8 VQA =@ ) = 28