Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Modeling Multi-turn Conversation with Deep Utte...
Search
onizuka laboratory
October 23, 2018
Research
0
98
Modeling Multi-turn Conversation with Deep Utterance Aggregation
弊研究室で行なったCOLING2018読み会の発表資料です。
onizuka laboratory
October 23, 2018
Tweet
Share
More Decks by onizuka laboratory
See All by onizuka laboratory
Phrase-Based & Neural Unsupervised Machine Translation
onilab
0
120
Tell-and-Answer: Towards Explainable Visual Question Answering using Attributes and Captions
onilab
0
72
Card-660: A Reliable Evaluation Framework for Rare Word Representation Models
onilab
0
37
A Word-Complexity Lexicon and A Neural Readability Ranking Model for Lexical Simplification
onilab
0
130
Integrating Transformer and Paraphrase Rules for Sentence Simplification
onilab
0
61
An Auto-Encoder Matching Model for Learning Utterance-Level Semantic Dependency in Dialogue Generation
onilab
0
57
Generating More Interesting Responses in Neural Conversation Models with Distributional Constraints
onilab
0
100
Learning Semantic Sentence Embeddings using Pair-wise Discriminator
onilab
0
120
SGM: Sequence Generation Model for Multi-Label Classification
onilab
0
80
Other Decks in Research
See All in Research
令和最新技術で伝統掲示板を再構築: HonoX で作る型安全なスレッドフロート型掲示板 / かろっく@calloc134 - Hono Conference 2025
calloc134
0
550
Sat2City:3D City Generation from A Single Satellite Image with Cascaded Latent Diffusion
satai
4
660
姫路市 -都市OSの「再実装」-
hopin
0
1.6k
A History of Approximate Nearest Neighbor Search from an Applications Perspective
matsui_528
1
160
Satellites Reveal Mobility: A Commuting Origin-destination Flow Generator for Global Cities
satai
3
500
ウェブ・ソーシャルメディア論文読み会 第36回: The Stepwise Deception: Simulating the Evolution from True News to Fake News with LLM Agents (EMNLP, 2025)
hkefka385
0
150
湯村研究室の紹介2025 / yumulab2025
yumulab
0
300
社内データ分析AIエージェントを できるだけ使いやすくする工夫
fufufukakaka
1
890
SREのためのテレメトリー技術の探究 / Telemetry for SRE
yuukit
13
3k
地域丸ごとデイサービス「Go トレ」の紹介
smartfukushilab1
0
910
離散凸解析に基づく予測付き離散最適化手法 (IBIS '25)
taihei_oki
PRO
1
680
When Learned Data Structures Meet Computer Vision
matsui_528
1
2.8k
Featured
See All Featured
The SEO Collaboration Effect
kristinabergwall1
0
350
SERP Conf. Vienna - Web Accessibility: Optimizing for Inclusivity and SEO
sarafernandez
1
1.3k
Information Architects: The Missing Link in Design Systems
soysaucechin
0
780
Navigating the moral maze — ethical principles for Al-driven product design
skipperchong
2
240
Lessons Learnt from Crawling 1000+ Websites
charlesmeaden
PRO
1
1.1k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
133
19k
30 Presentation Tips
portentint
PRO
1
220
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
31
3.1k
Building a Scalable Design System with Sketch
lauravandoore
463
34k
From Legacy to Launchpad: Building Startup-Ready Communities
dugsong
0
140
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
21
1.4k
Raft: Consensus for Rubyists
vanstee
141
7.3k
Transcript
Modeling Multi-turn Conversation with Deep Utterance Aggregation M1 Koji Tanaka
1
,+! ' 2 %0#)-(0 (-:47".10*+ +/2%0 $ 38?5<?2
&;9>, AE-commerce Dialogue Corpus 2==@6B 2
3
Matching Attention Flow !" = $%& !"'( , *" ,
+" ,- " = ./ tanh 4 5 *- + 47 5 *" + 89 :; " = exp ,; " / @ -A( B exp(,- ") +" = @ ;A( B :; "*; 4
Ubuntu Dialogue Corpus (Ubuntu) Douban Conversation Corpus (Douban) E-commerce
Dialogue Corpus (ECD) TRAIN VALID TEST Ubuntu 1M 500K 500K Douban 1M 50K 10K ECD 1M 10K 10K [context-response pairs] 5
Rn@k Multi-turn
(Zhou et al, 2016) Sequential Matching Network (Wu et al, 2017) 6
7
EDC 8
1 U: How about
the packaging of skin care products. By the way, which delivery company will be responsible for shipping and how long can I receive the goods ? U:How about nuts ? S: Nuts is good. U: OK then, how about zongzi ? 9
!$*"'* &%) ,E-commerce Dialogue Corpus
((+#- EDC 10