Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Modeling Multi-turn Conversation with Deep Utte...
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
onizuka laboratory
October 23, 2018
Research
0
98
Modeling Multi-turn Conversation with Deep Utterance Aggregation
弊研究室で行なったCOLING2018読み会の発表資料です。
onizuka laboratory
October 23, 2018
Tweet
Share
More Decks by onizuka laboratory
See All by onizuka laboratory
Phrase-Based & Neural Unsupervised Machine Translation
onilab
0
120
Tell-and-Answer: Towards Explainable Visual Question Answering using Attributes and Captions
onilab
0
72
Card-660: A Reliable Evaluation Framework for Rare Word Representation Models
onilab
0
37
A Word-Complexity Lexicon and A Neural Readability Ranking Model for Lexical Simplification
onilab
0
130
Integrating Transformer and Paraphrase Rules for Sentence Simplification
onilab
0
61
An Auto-Encoder Matching Model for Learning Utterance-Level Semantic Dependency in Dialogue Generation
onilab
0
57
Generating More Interesting Responses in Neural Conversation Models with Distributional Constraints
onilab
0
100
Learning Semantic Sentence Embeddings using Pair-wise Discriminator
onilab
0
120
SGM: Sequence Generation Model for Multi-Label Classification
onilab
0
80
Other Decks in Research
See All in Research
データサイエンティストをめぐる環境の違い2025年版〈一般ビジネスパーソン調査の国際比較〉
datascientistsociety
PRO
0
700
"主観で終わらせない"定性データ活用 ― プロダクトディスカバリーを加速させるインサイトマネジメント / Utilizing qualitative data that "doesn't end with subjectivity" - Insight management that accelerates product discovery
kaminashi
15
20k
空間音響処理における物理法則に基づく機械学習
skoyamalab
0
190
AI in Enterprises - Java and Open Source to the Rescue
ivargrimstad
0
1.1k
教師あり学習と強化学習で作る 最強の数学特化LLM
analokmaus
2
890
Akamaiのキャッシュ効率を支えるAdaptSizeについての論文を読んでみた
bootjp
1
440
一般道の交通量減少と速度低下についての全国分析と熊本市におけるケーススタディ(20251122 土木計画学研究発表会)
trafficbrain
0
160
超高速データサイエンス
matsui_528
2
380
生成AI による論文執筆サポート・ワークショップ ─ サーベイ/リサーチクエスチョン編 / Workshop on AI-Assisted Paper Writing Support: Survey/Research Question Edition
ks91
PRO
0
140
Collective Predictive Coding and World Models in LLMs: A System 0/1/2/3 Perspective on Hierarchical Physical AI (IEEE SII 2026 Plenary Talk)
tanichu
1
250
ドメイン知識がない領域での自然言語処理の始め方
hargon24
1
240
2026-01-30-MandSL-textbook-jp-cos-lod
yegusa
0
180
Featured
See All Featured
Between Models and Reality
mayunak
1
190
Redefining SEO in the New Era of Traffic Generation
szymonslowik
1
210
Conquering PDFs: document understanding beyond plain text
inesmontani
PRO
4
2.3k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
254
22k
Keith and Marios Guide to Fast Websites
keithpitt
413
23k
How to optimise 3,500 product descriptions for ecommerce in one day using ChatGPT
katarinadahlin
PRO
0
3.4k
Sam Torres - BigQuery for SEOs
techseoconnect
PRO
0
190
Visualization
eitanlees
150
17k
The innovator’s Mindset - Leading Through an Era of Exponential Change - McGill University 2025
jdejongh
PRO
1
93
Navigating the Design Leadership Dip - Product Design Week Design Leaders+ Conference 2024
apolaine
0
180
Design of three-dimensional binary manipulators for pick-and-place task avoiding obstacles (IECON2024)
konakalab
0
350
jQuery: Nuts, Bolts and Bling
dougneiner
65
8.4k
Transcript
Modeling Multi-turn Conversation with Deep Utterance Aggregation M1 Koji Tanaka
1
,+! ' 2 %0#)-(0 (-:47".10*+ +/2%0 $ 38?5<?2
&;9>, AE-commerce Dialogue Corpus 2==@6B 2
3
Matching Attention Flow !" = $%& !"'( , *" ,
+" ,- " = ./ tanh 4 5 *- + 47 5 *" + 89 :; " = exp ,; " / @ -A( B exp(,- ") +" = @ ;A( B :; "*; 4
Ubuntu Dialogue Corpus (Ubuntu) Douban Conversation Corpus (Douban) E-commerce
Dialogue Corpus (ECD) TRAIN VALID TEST Ubuntu 1M 500K 500K Douban 1M 50K 10K ECD 1M 10K 10K [context-response pairs] 5
Rn@k Multi-turn
(Zhou et al, 2016) Sequential Matching Network (Wu et al, 2017) 6
7
EDC 8
1 U: How about
the packaging of skin care products. By the way, which delivery company will be responsible for shipping and how long can I receive the goods ? U:How about nuts ? S: Nuts is good. U: OK then, how about zongzi ? 9
!$*"'* &%) ,E-commerce Dialogue Corpus
((+#- EDC 10