Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
OpenTalks.AI - Сергей Шумский, Символьное мышле...
Search
OpenTalks.AI
February 14, 2019
Science
0
740
OpenTalks.AI - Сергей Шумский, Символьное мышление роботов
OpenTalks.AI
February 14, 2019
Tweet
Share
More Decks by OpenTalks.AI
See All by OpenTalks.AI
OpenTalks.AI - Виктор Лемпицкий, Моделирование 3Д сцен: новые подходы в 2020 году
opentalks
0
490
OpenTalks.AI - Алексей Чернявский, Нейросетевые алгоритмы для повышения качества медицинских изображений
opentalks
0
430
OpenTalks.AI - Александр Громов, Устойчивость нейросетевых моделей при анализе КТ/НДКТ-исследований
opentalks
0
370
OpenTalks.AI - Денис Тимонин, Megatron-LM: Обучение мультимиллиардных LMs при помощи техники Model Parallelism
opentalks
0
520
OpenTalks.AI - Егор Филимонов, Возможности платформы Huawei Atlas и эффективный гетерогенный инференс.
opentalks
0
150
OpenTalks.AI - Александр Прозоров, Референсная архитектура робота сервисного центра в отраслях с изменчивыми бизнес-процессами
opentalks
0
390
OpenTalks.AI - Наталья Лукашевич, Анализ тональности по отношению к компании — с чем не справился BERT
opentalks
0
340
OpenTalks.AI - Константин Воронцов, Фейковые новости и другие типы потенциально опасного дискурса: типология, подходы, датасеты, соревнования
opentalks
0
440
OpenTalks.AI - Дмитрий Ветров, Фрактальность функции потерь, эффект двойного спуска и степенные законы в глубинном обучении - фрагменты одной мозаики
opentalks
0
470
Other Decks in Science
See All in Science
A Guide to Academic Writing Using Generative AI - A Workshop
ks91
PRO
0
180
サイコロで理解する原子核崩壊と拡散現象 〜単純化されたモデルで本質を理解する〜
syotasasaki593876
0
140
知能とはなにかーヒトとAIのあいだー
tagtag
PRO
0
130
データベース12: 正規化(2/2) - データ従属性に基づく正規化
trycycle
PRO
0
1.1k
NASの容量不足のお悩み解決!災害対策も兼ねた「Wasabi Cloud NAS」はここがスゴイ
climbteam
1
310
俺たちは本当に分かり合えるのか? ~ PdMとスクラムチームの “ずれ” を科学する
bonotake
2
1.1k
タンパク質間相互作⽤を利⽤した⼈⼯知能による新しい薬剤遺伝⼦-疾患相互作⽤の同定
tagtag
PRO
0
130
機械学習 - K近傍法 & 機械学習のお作法
trycycle
PRO
0
1.3k
機械学習 - 決定木からはじめる機械学習
trycycle
PRO
0
1.2k
2025-05-31-pycon_italia
sofievl
0
130
白金鉱業Meetup_Vol.20 効果検証ことはじめ / Introduction to Impact Evaluation
brainpadpr
2
1.6k
People who frequently use ChatGPT for writing tasks are accurate and robust detectors of AI-generated text
rudorudo11
0
170
Featured
See All Featured
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
11
790
The untapped power of vector embeddings
frankvandijk
1
1.5k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
25
1.7k
So, you think you're a good person
axbom
PRO
1
1.9k
RailsConf 2023
tenderlove
30
1.3k
The Mindset for Success: Future Career Progression
greggifford
PRO
0
210
Design of three-dimensional binary manipulators for pick-and-place task avoiding obstacles (IECON2024)
konakalab
0
330
How to train your dragon (web standard)
notwaldorf
97
6.5k
Between Models and Reality
mayunak
1
170
Neural Spatial Audio Processing for Sound Field Analysis and Control
skoyamalab
0
140
Public Speaking Without Barfing On Your Shoes - THAT 2023
reverentgeek
1
290
Typedesign – Prime Four
hannesfritz
42
2.9k
Transcript
The Symbolic Mind of Robots Sergey Shumsky, 2019
Motivation: common architecture of robotic brains Reinforcement learning
Motivation: common architecture of robotic brains
Agenda I. Problem Deep Reinforcement Learning II. Solution Deep Symbolic
Learning III. Prospects Robot Operating System
Agenda I. Problem Deep Reinforcement Learning
AlphaZero: intuition + calculation ▪ Deep intuition: Yes ▪ Deep
planning: No ▪ Complexity of learning ∝ 2 , 3 TFLOPSyears – weights update 500 TFLOPSyears – search options
Google DeepMind research program "One way you can think about
our research program is: 'Can we build out from our perception, using deep-learning systems and learning from first principles? Can we build out all the way to high-level thinking and symbolic thinking?' " D. Hassabis (Google DeepMind)
Agenda I. Problem Deep Reinforcement Learning II. Solution Deep Symbolic
Learning
Deep symbolic learning ▪ Hierarchy of plans state sequences ▪
Planning and Learning in real time ▪ Complexity of learning ∝ ∝
Images and Symbols Coding Decoding Image ~ 106 bits Sensors
States Actions Effectors Image ~ 106 bits Symbols ~ 5 bits Planning
The trick: symbolic coding of images 2106 ~ , →
1 2 … > ( = 30, k = 7) symbols images = 210 <
Symbolic thinking ~ planning ▪ Coding of sequences ~ k
variants (words) ~ 30 Symbolic sequences can be remembered symbol +1 +2 ~ 30 ~ 30
Symbolic thinking ~ planning символ +1 +2 Image code Sequence
code (pattern)
Deep symbolic learning Layer L Layer L -1 1 2
…
Deep symbolic learning ▪ Learning useful patterns of interaction with
the world ▪ At all hierarchical levels ▪ In real time Encoder- Decoder +1 +1 Parser +1 Encoder- Decoder Parser symbols patterns symbols
Agenda I. Problem Deep Reinforcement Learning II. Solution Deep Symbolic
Learning III. Prospects Robot Operating System
Prospects Sensory intelligence Strategic intelligence Robotic intelligence Goal
setting and planning to achieve them Achieving the goal
Open AI gym Mountain car (Igor Pivovarov)
Interested? Join us!
[email protected]
[email protected]