Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
OpenTalks.AI - Сергей Шумский, Символьное мышле...
Search
OpenTalks.AI
February 14, 2019
Science
0
720
OpenTalks.AI - Сергей Шумский, Символьное мышление роботов
OpenTalks.AI
February 14, 2019
Tweet
Share
More Decks by OpenTalks.AI
See All by OpenTalks.AI
OpenTalks.AI - Виктор Лемпицкий, Моделирование 3Д сцен: новые подходы в 2020 году
opentalks
0
480
OpenTalks.AI - Алексей Чернявский, Нейросетевые алгоритмы для повышения качества медицинских изображений
opentalks
0
420
OpenTalks.AI - Александр Громов, Устойчивость нейросетевых моделей при анализе КТ/НДКТ-исследований
opentalks
0
370
OpenTalks.AI - Денис Тимонин, Megatron-LM: Обучение мультимиллиардных LMs при помощи техники Model Parallelism
opentalks
0
500
OpenTalks.AI - Егор Филимонов, Возможности платформы Huawei Atlas и эффективный гетерогенный инференс.
opentalks
0
140
OpenTalks.AI - Александр Прозоров, Референсная архитектура робота сервисного центра в отраслях с изменчивыми бизнес-процессами
opentalks
0
370
OpenTalks.AI - Наталья Лукашевич, Анализ тональности по отношению к компании — с чем не справился BERT
opentalks
0
330
OpenTalks.AI - Константин Воронцов, Фейковые новости и другие типы потенциально опасного дискурса: типология, подходы, датасеты, соревнования
opentalks
0
430
OpenTalks.AI - Дмитрий Ветров, Фрактальность функции потерь, эффект двойного спуска и степенные законы в глубинном обучении - фрагменты одной мозаики
opentalks
0
460
Other Decks in Science
See All in Science
データベース01: データベースを使わない世界
trycycle
PRO
1
650
How To Buy, Verified Venmo Accounts in 2025 This year
usaallshop68
2
110
データベース05: SQL(2/3) 結合質問
trycycle
PRO
0
710
Collective Predictive Coding Hypothesis and Beyond (@Japanese Association for Philosophy of Science, 26th October 2024)
tanichu
0
140
06_浅井雄一郎_株式会社浅井農園代表取締役社長_紹介資料.pdf
sip3ristex
0
500
LayerXにおける業務の完全自動運転化に向けたAI技術活用事例 / layerx-ai-jsai2025
shimacos
1
1.1k
統計学入門講座 第2回スライド
techmathproject
0
130
機械学習 - K近傍法 & 機械学習のお作法
trycycle
PRO
0
1.1k
眼科AIコンテスト2024_特別賞_6位Solution
pon0matsu
0
410
A Guide to Academic Writing Using Generative AI - A Workshop
ks91
PRO
0
110
白金鉱業Meetup Vol.16_【初学者向け発表】 数理最適化のはじめの一歩 〜身近な問題で学ぶ最適化の面白さ〜
brainpadpr
11
2.2k
生成AIと学ぶPythonデータ分析再入門-Pythonによるクラスタリング・可視化をサクサク実施-
datascientistsociety
PRO
4
1.6k
Featured
See All Featured
The Art of Programming - Codeland 2020
erikaheidi
54
13k
Music & Morning Musume
bryan
46
6.6k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
30
2.1k
Practical Orchestrator
shlominoach
188
11k
jQuery: Nuts, Bolts and Bling
dougneiner
63
7.8k
Scaling GitHub
holman
459
140k
Building Applications with DynamoDB
mza
95
6.5k
How STYLIGHT went responsive
nonsquared
100
5.6k
The MySQL Ecosystem @ GitHub 2015
samlambert
251
13k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
26k
Fantastic passwords and where to find them - at NoRuKo
philnash
51
3.3k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
29
2.7k
Transcript
The Symbolic Mind of Robots Sergey Shumsky, 2019
Motivation: common architecture of robotic brains Reinforcement learning
Motivation: common architecture of robotic brains
Agenda I. Problem Deep Reinforcement Learning II. Solution Deep Symbolic
Learning III. Prospects Robot Operating System
Agenda I. Problem Deep Reinforcement Learning
AlphaZero: intuition + calculation ▪ Deep intuition: Yes ▪ Deep
planning: No ▪ Complexity of learning ∝ 2 , 3 TFLOPSyears – weights update 500 TFLOPSyears – search options
Google DeepMind research program "One way you can think about
our research program is: 'Can we build out from our perception, using deep-learning systems and learning from first principles? Can we build out all the way to high-level thinking and symbolic thinking?' " D. Hassabis (Google DeepMind)
Agenda I. Problem Deep Reinforcement Learning II. Solution Deep Symbolic
Learning
Deep symbolic learning ▪ Hierarchy of plans state sequences ▪
Planning and Learning in real time ▪ Complexity of learning ∝ ∝
Images and Symbols Coding Decoding Image ~ 106 bits Sensors
States Actions Effectors Image ~ 106 bits Symbols ~ 5 bits Planning
The trick: symbolic coding of images 2106 ~ , →
1 2 … > ( = 30, k = 7) symbols images = 210 <
Symbolic thinking ~ planning ▪ Coding of sequences ~ k
variants (words) ~ 30 Symbolic sequences can be remembered symbol +1 +2 ~ 30 ~ 30
Symbolic thinking ~ planning символ +1 +2 Image code Sequence
code (pattern)
Deep symbolic learning Layer L Layer L -1 1 2
…
Deep symbolic learning ▪ Learning useful patterns of interaction with
the world ▪ At all hierarchical levels ▪ In real time Encoder- Decoder +1 +1 Parser +1 Encoder- Decoder Parser symbols patterns symbols
Agenda I. Problem Deep Reinforcement Learning II. Solution Deep Symbolic
Learning III. Prospects Robot Operating System
Prospects Sensory intelligence Strategic intelligence Robotic intelligence Goal
setting and planning to achieve them Achieving the goal
Open AI gym Mountain car (Igor Pivovarov)
Interested? Join us!
[email protected]
[email protected]