Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
OpenTalks.AI - Сергей Шумский, Символьное мышле...
Search
OpenTalks.AI
February 14, 2019
Science
0
730
OpenTalks.AI - Сергей Шумский, Символьное мышление роботов
OpenTalks.AI
February 14, 2019
Tweet
Share
More Decks by OpenTalks.AI
See All by OpenTalks.AI
OpenTalks.AI - Виктор Лемпицкий, Моделирование 3Д сцен: новые подходы в 2020 году
opentalks
0
490
OpenTalks.AI - Алексей Чернявский, Нейросетевые алгоритмы для повышения качества медицинских изображений
opentalks
0
430
OpenTalks.AI - Александр Громов, Устойчивость нейросетевых моделей при анализе КТ/НДКТ-исследований
opentalks
0
370
OpenTalks.AI - Денис Тимонин, Megatron-LM: Обучение мультимиллиардных LMs при помощи техники Model Parallelism
opentalks
0
510
OpenTalks.AI - Егор Филимонов, Возможности платформы Huawei Atlas и эффективный гетерогенный инференс.
opentalks
0
150
OpenTalks.AI - Александр Прозоров, Референсная архитектура робота сервисного центра в отраслях с изменчивыми бизнес-процессами
opentalks
0
380
OpenTalks.AI - Наталья Лукашевич, Анализ тональности по отношению к компании — с чем не справился BERT
opentalks
0
340
OpenTalks.AI - Константин Воронцов, Фейковые новости и другие типы потенциально опасного дискурса: типология, подходы, датасеты, соревнования
opentalks
0
440
OpenTalks.AI - Дмитрий Ветров, Фрактальность функции потерь, эффект двойного спуска и степенные законы в глубинном обучении - фрагменты одной мозаики
opentalks
0
470
Other Decks in Science
See All in Science
NASの容量不足のお悩み解決!災害対策も兼ねた「Wasabi Cloud NAS」はここがスゴイ
climbteam
1
210
Cross-Media Technologies, Information Science and Human-Information Interaction
signer
PRO
3
31k
機械学習 - SVM
trycycle
PRO
1
910
安心・効率的な医療現場の実現へ ~オンプレAI & ノーコードワークフローで進める業務改革~
siyoo
0
390
生成AIと学ぶPythonデータ分析再入門-Pythonによるクラスタリング・可視化をサクサク実施-
datascientistsociety
PRO
4
1.8k
Gemini Prompt Engineering: Practical Techniques for Tangible AI Outcomes
mfonobong
2
190
蔵本モデルが解き明かす同期と相転移の秘密 〜拍手のリズムはなぜ揃うのか?〜
syotasasaki593876
1
120
MCMCのR-hatは分散分析である
moricup
0
500
機械学習 - pandas入門
trycycle
PRO
0
350
Text-to-SQLの既存の評価指標を問い直す
gotalab555
1
110
データベース03: 関係データモデル
trycycle
PRO
1
290
生成検索エンジン最適化に関する研究の紹介
ynakano
2
1.4k
Featured
See All Featured
Bash Introduction
62gerente
615
210k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
23
1.5k
Leading Effective Engineering Teams in the AI Era
addyosmani
8
1k
The Language of Interfaces
destraynor
162
25k
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
10
650
How Fast Is Fast Enough? [PerfNow 2025]
tammyeverts
2
300
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.5k
StorybookのUI Testing Handbookを読んだ
zakiyama
31
6.3k
For a Future-Friendly Web
brad_frost
180
10k
4 Signs Your Business is Dying
shpigford
186
22k
jQuery: Nuts, Bolts and Bling
dougneiner
65
8k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
285
14k
Transcript
The Symbolic Mind of Robots Sergey Shumsky, 2019
Motivation: common architecture of robotic brains Reinforcement learning
Motivation: common architecture of robotic brains
Agenda I. Problem Deep Reinforcement Learning II. Solution Deep Symbolic
Learning III. Prospects Robot Operating System
Agenda I. Problem Deep Reinforcement Learning
AlphaZero: intuition + calculation ▪ Deep intuition: Yes ▪ Deep
planning: No ▪ Complexity of learning ∝ 2 , 3 TFLOPSyears – weights update 500 TFLOPSyears – search options
Google DeepMind research program "One way you can think about
our research program is: 'Can we build out from our perception, using deep-learning systems and learning from first principles? Can we build out all the way to high-level thinking and symbolic thinking?' " D. Hassabis (Google DeepMind)
Agenda I. Problem Deep Reinforcement Learning II. Solution Deep Symbolic
Learning
Deep symbolic learning ▪ Hierarchy of plans state sequences ▪
Planning and Learning in real time ▪ Complexity of learning ∝ ∝
Images and Symbols Coding Decoding Image ~ 106 bits Sensors
States Actions Effectors Image ~ 106 bits Symbols ~ 5 bits Planning
The trick: symbolic coding of images 2106 ~ , →
1 2 … > ( = 30, k = 7) symbols images = 210 <
Symbolic thinking ~ planning ▪ Coding of sequences ~ k
variants (words) ~ 30 Symbolic sequences can be remembered symbol +1 +2 ~ 30 ~ 30
Symbolic thinking ~ planning символ +1 +2 Image code Sequence
code (pattern)
Deep symbolic learning Layer L Layer L -1 1 2
…
Deep symbolic learning ▪ Learning useful patterns of interaction with
the world ▪ At all hierarchical levels ▪ In real time Encoder- Decoder +1 +1 Parser +1 Encoder- Decoder Parser symbols patterns symbols
Agenda I. Problem Deep Reinforcement Learning II. Solution Deep Symbolic
Learning III. Prospects Robot Operating System
Prospects Sensory intelligence Strategic intelligence Robotic intelligence Goal
setting and planning to achieve them Achieving the goal
Open AI gym Mountain car (Igor Pivovarov)
Interested? Join us!
[email protected]
[email protected]