Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
TensorFlow on Mobile
Search
Arata Furukawa
September 11, 2016
Technology
0
150
TensorFlow on Mobile
「9/11 Deep Learning 学生無料勉強会@GMO Yours」
http://jagsc.connpass.com/event/36393/
上記イベントで発表したスライドです。
Arata Furukawa
September 11, 2016
Tweet
Share
More Decks by Arata Furukawa
See All by Arata Furukawa
2025-04-24 "Manga AI Understanding & Localization" Furukawa Arata (CyberAgent, Inc)
ornew
2
850
TensorFlow Liteで機械学習Androidアプリを超簡単に作る
ornew
4
7.5k
みんなラズパイでTensorFlow Liteしよう?
ornew
2
2.4k
TensorFlowで作ったAIをAndroidアプリで実行する
ornew
0
1.7k
The Future of Mobile × ML
ornew
0
720
Let's use TensorFlow on Android!
ornew
0
530
TensorFlow on Android
ornew
1
2.4k
The motion recognition from the sensor values for wearable terminal
ornew
0
75
Other Decks in Technology
See All in Technology
Kiroから考える AIコーディングツールの潮流
oikon48
4
680
Claude Codeは仕様駆動の夢を見ない
gotalab555
23
6.3k
Claude Codeが働くAI中心の業務システム構築の挑戦―AIエージェント中心の働き方を目指して
os1ma
9
2.5k
【CEDEC2025】大規模言語モデルを活用したゲーム内会話パートのスクリプト作成支援への取り組み
cygames
PRO
2
830
いかにして命令の入れ替わりについて心配するのをやめ、メモリモデルを愛するようになったか(改)
nullpo_head
7
2.5k
生成AI導入の効果を最大化する データ活用戦略
ham0215
0
130
アカデミーキャンプ 2025 SuuuuuuMMeR「燃えろ!!ロボコン」 / Academy Camp 2025 SuuuuuuMMeR "Burn the Spirit, Robocon!!" DAY 1
ks91
PRO
0
140
SRE新規立ち上げ! Hubbleインフラのこれまでと展望
katsuya0515
0
190
GMOペパボのデータ基盤とデータ活用の現在地 / Current State of GMO Pepabo's Data Infrastructure and Data Utilization
zaimy
3
210
猫でもわかるQ_CLI(CDK開発編)+ちょっとだけKiro
kentapapa
0
3.4k
Jamf Connect ZTNAとMDMで実現! 金融ベンチャーにおける「デバイストラスト」実例と軌跡 / Kyash Device Trust
rela1470
1
190
Foundation Model × VisionKit で実現するローカル OCR
sansantech
PRO
1
340
Featured
See All Featured
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
18
1.1k
Mobile First: as difficult as doing things right
swwweet
223
9.9k
Music & Morning Musume
bryan
46
6.7k
Designing Experiences People Love
moore
142
24k
The Language of Interfaces
destraynor
158
25k
Navigating Team Friction
lara
188
15k
The Illustrated Children's Guide to Kubernetes
chrisshort
48
50k
Designing for Performance
lara
610
69k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
667
120k
Testing 201, or: Great Expectations
jmmastey
45
7.6k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
34
3.1k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
53k
Transcript
Tensorflow on Mobile 東海大学 理学部 日本Androidの会 学生部 古川新
古川 新 Arata Furukawa • 東海大学 理学部 ピカピカの1年生 • プログラミング、イラスト、デザインが趣味
• なんでもします!
Tensorflowとは
人工知能ライブラリでしょ、 そのくらい知ってるよ
厳密には 「人工知能(機械学習)のライブラリ」 は正しくない。
確かにTensorflowは、機械学習の研究を行って いたGoogleのエンジニアや研究者によって開発 されました。 しかし、Tensorflow自体は機械学習に限定され た用途で使用されるものではありません。
“ TensorFlow™ is an open source software library for numerical
computation using data flow graphs.
データフローグラフ型 汎用数値演算ライブラリ Deep Learningは莫大な計算資源を要求します。 その要求に応えるためには、抽象的でスケーラビリティかつ ポータビリティな、非同期並列で実行可能な数値演算の仕組 みが必要でした。 Tensorflowはまさにそれを実現するライブラリです。 機械学習に限らず、このライブラリ自体はどんな計算であって も応用可能です。
(オープンソース・ソフトウェア)
Tensorflow Graph Tensorflowはあらゆる数学演算をノードとエッジの有向グラ フで表現します。 また、TensorflowグラフはProtocol Buffers形式で シリアライズできます。 シリアライズされた抽象グラフは他のプラットフォーム・アーキ テクチャ・デバイスでも扱えます。
Deep Neural Networks ディープニューラルネットワーク(DNN)は巨大な行列演算のグ ラフで表現できます。 よって、DNNも同様にTensorflowグラフとして表現すること ができます。
Distributed TensorFlow Tensorflowの真価は分散処理にあります。Tensorflowでは データ並列が透過的に行なえます。 コードにほとんど手を加えることなく、マシンリソースにスケー ルした適切なスケジューリングの最適化などを全て自動で行 い、演算をスケールアウトします。 高度な分散処理数値演算ライブラリ、それがTensorflowの真 の姿です。
「Large Scale Distributed Systems for Training Neural Networks (Jeff Dean
& Oriol Vinyals Google)」より引用
学習と実行の 非対称性
一般的な演算コスト 学習コスト > 実行コスト
学習の演算コスト 1. 規模にも依るが、膨大な回数の 反復学習が必要←ほぼこれ 2. 誤差の逆伝搬など学習用の 計算量が多い 一般的に知られているように、訓練には 莫大な計算資源が必要となる。 「AlphaGo
の試合に用いられた Google のディープラーニング専用サーバ」 Google Cloud Platform Japan Blogより
実行の演算コスト 1. 反復実行 →要らない 2. 誤差逆伝搬したりする分の計算量 →要らない
学習に莫大なコストがかかるニューラルネットワークも、 モバイルで動きます
“ TensorFlow Android Camera Demo https://github.com/tensorflow/tensorflow/tree/master/tensorflow/examples/android
GitHubのTensorflowリポジトリに AndroidでTensorflowを 実行するサンプルが公開されている。
http://goo.gl/ CtLXYm ※使用は自己責任でお願いします ※他の場所にアップロードしたり しないでください
サンプルビルドについて 何か話すことがあれば話す (未定)
モバイルアプリに 組み込んでみた
None
Tensorflowによる リバーシAI Androidアプリ
Android Firebase プレイデータを自動送信 AIが定期的に自動更新される Tensorflo w
Data Server Run Tensorflow Firebase Realtime Database C++ Java Protocol
Buffers JNI Reversi OSUSHIの構成:Androidアプリ側 HTTPS Android App
True Portability Tensorflowグラフは非常にポータビリティが高い。 配布されたモデルを利用したり、更にそれを学習させたりする ことが容易です。
「モデルさえあれば…」 Tensorflow学習済みモデルの配布/利用は容易です。 抽象化されたグラフを表現したProtocol Buffers形式のテキ ストorバイナリデータでしかないからです。 実際に配布されているモデルも出始めており、今後増加する と思われます。 もしかしたら、モデルリポジトリなんてものが今後出てくるか も?
新しいアプリ開発の形? ニューラルネットワークは処理能力に乏しいモバイルプラット フォームでも利用できます。 人工知能はモデルさえあれば一般的なアプリに組み込むこと が可能な段階にあるのです。
ご清聴ありがとうございました。