Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
TensorFlow on Mobile
Search
Arata Furukawa
September 11, 2016
Technology
0
150
TensorFlow on Mobile
「9/11 Deep Learning 学生無料勉強会@GMO Yours」
http://jagsc.connpass.com/event/36393/
上記イベントで発表したスライドです。
Arata Furukawa
September 11, 2016
Tweet
Share
More Decks by Arata Furukawa
See All by Arata Furukawa
2025-04-24 "Manga AI Understanding & Localization" Furukawa Arata (CyberAgent, Inc)
ornew
2
650
TensorFlow Liteで機械学習Androidアプリを超簡単に作る
ornew
4
7.4k
みんなラズパイでTensorFlow Liteしよう?
ornew
2
2.4k
TensorFlowで作ったAIをAndroidアプリで実行する
ornew
0
1.7k
The Future of Mobile × ML
ornew
0
710
Let's use TensorFlow on Android!
ornew
0
520
TensorFlow on Android
ornew
1
2.4k
The motion recognition from the sensor values for wearable terminal
ornew
0
69
Other Decks in Technology
See All in Technology
ゆるSRE #11 LT
okaru
1
310
Java 30周年記念! Javaの30年をふりかえる
skrb
4
2.7k
MCPを利用して自然言語で3Dプリントしてみよう!
hamadakoji
0
1.1k
実践Kafka Streams 〜イベント駆動型アーキテクチャを添えて〜
joker1007
3
830
Amazon DevOps Guru のベースラインを整備して1ヶ月ほど運用してみた #jawsug_asa / Amazon DevOps Guru trial
masahirokawahara
3
210
Oracle Cloud Infrastructure IaaS 新機能アップデート 2025/03 - 2025/05
oracle4engineer
PRO
1
130
Data Hubグループ 紹介資料
sansan33
PRO
0
1.8k
データベースの引越しを Ora2Pg でスマートにやろう
jri_narita
0
180
20250612_GitHubを使いこなすためにソニーの開発現場が取り組んでいるプラクティス.pdf
osakiy8
1
320
医療業界に特化した音声認識モデル構築のためのアノテーションの実態
thickstem
0
490
Web Intelligence and Visual Media Analytics
weblyzard
PRO
1
6.1k
うちの会社の評判は?SNSの投稿分析にAIを使ってみた
doumae
0
610
Featured
See All Featured
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
331
22k
We Have a Design System, Now What?
morganepeng
52
7.6k
GraphQLの誤解/rethinking-graphql
sonatard
71
11k
It's Worth the Effort
3n
184
28k
Measuring & Analyzing Core Web Vitals
bluesmoon
7
470
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
25
2.8k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
130
19k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
45
7.3k
What's in a price? How to price your products and services
michaelherold
245
12k
Imperfection Machines: The Place of Print at Facebook
scottboms
267
13k
Building Flexible Design Systems
yeseniaperezcruz
328
39k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
123
52k
Transcript
Tensorflow on Mobile 東海大学 理学部 日本Androidの会 学生部 古川新
古川 新 Arata Furukawa • 東海大学 理学部 ピカピカの1年生 • プログラミング、イラスト、デザインが趣味
• なんでもします!
Tensorflowとは
人工知能ライブラリでしょ、 そのくらい知ってるよ
厳密には 「人工知能(機械学習)のライブラリ」 は正しくない。
確かにTensorflowは、機械学習の研究を行って いたGoogleのエンジニアや研究者によって開発 されました。 しかし、Tensorflow自体は機械学習に限定され た用途で使用されるものではありません。
“ TensorFlow™ is an open source software library for numerical
computation using data flow graphs.
データフローグラフ型 汎用数値演算ライブラリ Deep Learningは莫大な計算資源を要求します。 その要求に応えるためには、抽象的でスケーラビリティかつ ポータビリティな、非同期並列で実行可能な数値演算の仕組 みが必要でした。 Tensorflowはまさにそれを実現するライブラリです。 機械学習に限らず、このライブラリ自体はどんな計算であって も応用可能です。
(オープンソース・ソフトウェア)
Tensorflow Graph Tensorflowはあらゆる数学演算をノードとエッジの有向グラ フで表現します。 また、TensorflowグラフはProtocol Buffers形式で シリアライズできます。 シリアライズされた抽象グラフは他のプラットフォーム・アーキ テクチャ・デバイスでも扱えます。
Deep Neural Networks ディープニューラルネットワーク(DNN)は巨大な行列演算のグ ラフで表現できます。 よって、DNNも同様にTensorflowグラフとして表現すること ができます。
Distributed TensorFlow Tensorflowの真価は分散処理にあります。Tensorflowでは データ並列が透過的に行なえます。 コードにほとんど手を加えることなく、マシンリソースにスケー ルした適切なスケジューリングの最適化などを全て自動で行 い、演算をスケールアウトします。 高度な分散処理数値演算ライブラリ、それがTensorflowの真 の姿です。
「Large Scale Distributed Systems for Training Neural Networks (Jeff Dean
& Oriol Vinyals Google)」より引用
学習と実行の 非対称性
一般的な演算コスト 学習コスト > 実行コスト
学習の演算コスト 1. 規模にも依るが、膨大な回数の 反復学習が必要←ほぼこれ 2. 誤差の逆伝搬など学習用の 計算量が多い 一般的に知られているように、訓練には 莫大な計算資源が必要となる。 「AlphaGo
の試合に用いられた Google のディープラーニング専用サーバ」 Google Cloud Platform Japan Blogより
実行の演算コスト 1. 反復実行 →要らない 2. 誤差逆伝搬したりする分の計算量 →要らない
学習に莫大なコストがかかるニューラルネットワークも、 モバイルで動きます
“ TensorFlow Android Camera Demo https://github.com/tensorflow/tensorflow/tree/master/tensorflow/examples/android
GitHubのTensorflowリポジトリに AndroidでTensorflowを 実行するサンプルが公開されている。
http://goo.gl/ CtLXYm ※使用は自己責任でお願いします ※他の場所にアップロードしたり しないでください
サンプルビルドについて 何か話すことがあれば話す (未定)
モバイルアプリに 組み込んでみた
None
Tensorflowによる リバーシAI Androidアプリ
Android Firebase プレイデータを自動送信 AIが定期的に自動更新される Tensorflo w
Data Server Run Tensorflow Firebase Realtime Database C++ Java Protocol
Buffers JNI Reversi OSUSHIの構成:Androidアプリ側 HTTPS Android App
True Portability Tensorflowグラフは非常にポータビリティが高い。 配布されたモデルを利用したり、更にそれを学習させたりする ことが容易です。
「モデルさえあれば…」 Tensorflow学習済みモデルの配布/利用は容易です。 抽象化されたグラフを表現したProtocol Buffers形式のテキ ストorバイナリデータでしかないからです。 実際に配布されているモデルも出始めており、今後増加する と思われます。 もしかしたら、モデルリポジトリなんてものが今後出てくるか も?
新しいアプリ開発の形? ニューラルネットワークは処理能力に乏しいモバイルプラット フォームでも利用できます。 人工知能はモデルさえあれば一般的なアプリに組み込むこと が可能な段階にあるのです。
ご清聴ありがとうございました。