Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
TensorFlow on Mobile
Search
Arata Furukawa
September 11, 2016
Technology
0
160
TensorFlow on Mobile
「9/11 Deep Learning 学生無料勉強会@GMO Yours」
http://jagsc.connpass.com/event/36393/
上記イベントで発表したスライドです。
Arata Furukawa
September 11, 2016
Tweet
Share
More Decks by Arata Furukawa
See All by Arata Furukawa
20251007: What happens when multi-agent systems become larger? (CyberAgent, Inc)
ornew
1
660
2025-04-24 "Manga AI Understanding & Localization" Furukawa Arata (CyberAgent, Inc)
ornew
2
1.1k
TensorFlow Liteで機械学習Androidアプリを超簡単に作る
ornew
4
7.6k
みんなラズパイでTensorFlow Liteしよう?
ornew
2
2.5k
TensorFlowで作ったAIをAndroidアプリで実行する
ornew
0
1.7k
The Future of Mobile × ML
ornew
0
730
Let's use TensorFlow on Android!
ornew
0
550
TensorFlow on Android
ornew
1
2.4k
The motion recognition from the sensor values for wearable terminal
ornew
0
86
Other Decks in Technology
See All in Technology
意外とあった SQL Server 関連アップデート + Database Savings Plans
stknohg
PRO
0
320
re:Inventで気になったサービスを10分でいけるところまでお話しします
yama3133
1
120
SSO方式とJumpアカウント方式の比較と設計方針
yuobayashi
7
680
OCI Oracle Database Services新機能アップデート(2025/09-2025/11)
oracle4engineer
PRO
1
180
手動から自動へ、そしてその先へ
moritamasami
0
300
Lambdaの常識はどう変わる?!re:Invent 2025 before after
iwatatomoya
1
530
mairuでつくるクレデンシャルレス開発環境 / Credential-less development environment using Mailru
mirakui
5
480
20251209_WAKECareer_生成AIを活用した設計・開発プロセス
syobochim
7
1.6k
業務のトイルをバスターせよ 〜AI時代の生存戦略〜
staka121
PRO
2
190
re:Invent 2025 ふりかえり 生成AI版
takaakikakei
1
210
モダンデータスタック (MDS) の話とデータ分析が起こすビジネス変革
sutotakeshi
0
490
re:Invent 2025 ~何をする者であり、どこへいくのか~
tetutetu214
0
210
Featured
See All Featured
Understanding Cognitive Biases in Performance Measurement
bluesmoon
32
2.7k
Navigating Team Friction
lara
191
16k
Done Done
chrislema
186
16k
Rebuilding a faster, lazier Slack
samanthasiow
84
9.3k
Automating Front-end Workflow
addyosmani
1371
200k
Git: the NoSQL Database
bkeepers
PRO
432
66k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
12
970
Code Review Best Practice
trishagee
74
19k
jQuery: Nuts, Bolts and Bling
dougneiner
65
8.2k
Docker and Python
trallard
47
3.7k
KATA
mclloyd
PRO
33
15k
Balancing Empowerment & Direction
lara
5
800
Transcript
Tensorflow on Mobile 東海大学 理学部 日本Androidの会 学生部 古川新
古川 新 Arata Furukawa • 東海大学 理学部 ピカピカの1年生 • プログラミング、イラスト、デザインが趣味
• なんでもします!
Tensorflowとは
人工知能ライブラリでしょ、 そのくらい知ってるよ
厳密には 「人工知能(機械学習)のライブラリ」 は正しくない。
確かにTensorflowは、機械学習の研究を行って いたGoogleのエンジニアや研究者によって開発 されました。 しかし、Tensorflow自体は機械学習に限定され た用途で使用されるものではありません。
“ TensorFlow™ is an open source software library for numerical
computation using data flow graphs.
データフローグラフ型 汎用数値演算ライブラリ Deep Learningは莫大な計算資源を要求します。 その要求に応えるためには、抽象的でスケーラビリティかつ ポータビリティな、非同期並列で実行可能な数値演算の仕組 みが必要でした。 Tensorflowはまさにそれを実現するライブラリです。 機械学習に限らず、このライブラリ自体はどんな計算であって も応用可能です。
(オープンソース・ソフトウェア)
Tensorflow Graph Tensorflowはあらゆる数学演算をノードとエッジの有向グラ フで表現します。 また、TensorflowグラフはProtocol Buffers形式で シリアライズできます。 シリアライズされた抽象グラフは他のプラットフォーム・アーキ テクチャ・デバイスでも扱えます。
Deep Neural Networks ディープニューラルネットワーク(DNN)は巨大な行列演算のグ ラフで表現できます。 よって、DNNも同様にTensorflowグラフとして表現すること ができます。
Distributed TensorFlow Tensorflowの真価は分散処理にあります。Tensorflowでは データ並列が透過的に行なえます。 コードにほとんど手を加えることなく、マシンリソースにスケー ルした適切なスケジューリングの最適化などを全て自動で行 い、演算をスケールアウトします。 高度な分散処理数値演算ライブラリ、それがTensorflowの真 の姿です。
「Large Scale Distributed Systems for Training Neural Networks (Jeff Dean
& Oriol Vinyals Google)」より引用
学習と実行の 非対称性
一般的な演算コスト 学習コスト > 実行コスト
学習の演算コスト 1. 規模にも依るが、膨大な回数の 反復学習が必要←ほぼこれ 2. 誤差の逆伝搬など学習用の 計算量が多い 一般的に知られているように、訓練には 莫大な計算資源が必要となる。 「AlphaGo
の試合に用いられた Google のディープラーニング専用サーバ」 Google Cloud Platform Japan Blogより
実行の演算コスト 1. 反復実行 →要らない 2. 誤差逆伝搬したりする分の計算量 →要らない
学習に莫大なコストがかかるニューラルネットワークも、 モバイルで動きます
“ TensorFlow Android Camera Demo https://github.com/tensorflow/tensorflow/tree/master/tensorflow/examples/android
GitHubのTensorflowリポジトリに AndroidでTensorflowを 実行するサンプルが公開されている。
http://goo.gl/ CtLXYm ※使用は自己責任でお願いします ※他の場所にアップロードしたり しないでください
サンプルビルドについて 何か話すことがあれば話す (未定)
モバイルアプリに 組み込んでみた
None
Tensorflowによる リバーシAI Androidアプリ
Android Firebase プレイデータを自動送信 AIが定期的に自動更新される Tensorflo w
Data Server Run Tensorflow Firebase Realtime Database C++ Java Protocol
Buffers JNI Reversi OSUSHIの構成:Androidアプリ側 HTTPS Android App
True Portability Tensorflowグラフは非常にポータビリティが高い。 配布されたモデルを利用したり、更にそれを学習させたりする ことが容易です。
「モデルさえあれば…」 Tensorflow学習済みモデルの配布/利用は容易です。 抽象化されたグラフを表現したProtocol Buffers形式のテキ ストorバイナリデータでしかないからです。 実際に配布されているモデルも出始めており、今後増加する と思われます。 もしかしたら、モデルリポジトリなんてものが今後出てくるか も?
新しいアプリ開発の形? ニューラルネットワークは処理能力に乏しいモバイルプラット フォームでも利用できます。 人工知能はモデルさえあれば一般的なアプリに組み込むこと が可能な段階にあるのです。
ご清聴ありがとうございました。