Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Handling a High Performance PostgreSQL Database
Search
Rain
May 25, 2021
Technology
0
19
Handling a High Performance PostgreSQL Database
Rain
May 25, 2021
Tweet
Share
More Decks by Rain
See All by Rain
System Observability: We can improve only what we can observe
rainrainwu
0
62
Mock out dependencies while testing in Python
rainrainwu
0
150
Scheduling Async Tasks with Python Celery
rainrainwu
0
60
Other Decks in Technology
See All in Technology
20241120_JAWS_東京_ランチタイムLT#17_AWS認定全冠の先へ
tsumita
2
250
オープンソースAIとは何か? --「オープンソースAIの定義 v1.0」詳細解説
shujisado
7
800
ドメイン名の終活について - JPAAWG 7th -
mikit
33
20k
ドメインの本質を掴む / Get the essence of the domain
sinsoku
2
150
【Pycon mini 東海 2024】Google Colaboratoryで試すVLM
kazuhitotakahashi
2
500
EventHub Startup CTO of the year 2024 ピッチ資料
eventhub
0
110
誰も全体を知らない ~ ロールの垣根を超えて引き上げる開発生産性 / Boosting Development Productivity Across Roles
kakehashi
1
220
データプロダクトの定義からはじめる、データコントラクト駆動なデータ基盤
chanyou0311
2
300
透過型SMTPプロキシによる送信メールの可観測性向上: Update Edition / Improved observability of outgoing emails with transparent smtp proxy: Update edition
linyows
2
210
第1回 国土交通省 データコンペ参加者向け勉強会③- Snowflake x estie編 -
estie
0
130
エンジニア人生の拡張性を高める 「探索型キャリア設計」の提案
tenshoku_draft
1
120
【若手エンジニア応援LT会】ソフトウェアを学んできた私がインフラエンジニアを目指した理由
kazushi_ohata
0
150
Featured
See All Featured
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
44
6.8k
It's Worth the Effort
3n
183
27k
Art, The Web, and Tiny UX
lynnandtonic
297
20k
The Power of CSS Pseudo Elements
geoffreycrofte
73
5.3k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
126
18k
10 Git Anti Patterns You Should be Aware of
lemiorhan
654
59k
Fashionably flexible responsive web design (full day workshop)
malarkey
405
65k
Build your cross-platform service in a week with App Engine
jlugia
229
18k
No one is an island. Learnings from fostering a developers community.
thoeni
19
3k
Typedesign – Prime Four
hannesfritz
40
2.4k
Bootstrapping a Software Product
garrettdimon
PRO
305
110k
Why Our Code Smells
bkeepers
PRO
334
57k
Transcript
Handling a High Performance PostgreSQL Database
Hello! I am Rain! ex- A. SWE @iCHEF ex- SWE
@NetDB 2 GitHub: RainrainWu LinkedIn: Rain Wu
Outline ⬡ 資料庫基本概念 ⬡ 如何構思解決方案 ⬡ 具體方案與適合情境 3
1. 資料庫基本概念 在進入主題前,先來聊些必備知識
“ 資料庫是一種讓我們能穩定儲 存大量資料的軟體,以實現資料 與邏輯的解耦。 5
“ 其中又可依據是否對存入的資 料有嚴謹的 Schema 要求分為 RDBMS 和 NoSQL 資料庫,這 次所討論的
PostgreSQL 就是 一種 RDBMS。 6
資料庫有哪些操作 ⬡ CRUD ∙ Create ∙ Read ∙ Update ∙
Delete 7
為什麼 資料庫 會變慢 8
有很多原因 ⬡ 讀取很多資料 ⬡ 搜尋特定資料效率低落 ⬡ 為確保一致性所以有交易隔離機制 ⬡ ... 9
資料庫在道德上必須滿足 ACID ⬡ Atomic ⬡ Consistency ⬡ Isolation ⬡ Durability
10
2. 如何構思解決方案
搜集關鍵 資訊 針對可能的方法搜集資料,逐個 驗證是否適用於當前情境 12
可能有用的資訊 ⬡ 資料表的統計資訊 ⬡ Query plan ⬡ Transaction 統計資訊 ⬡
Monitor 13
可以思考的問題 ⬡ 同樣目標可不可以換一種做法 ⬡ 同樣事情可不可以只做一次 ⬡ 為了高效能有哪些東西可以降低優先級 ⬡ 這資料庫的底層實現是否適合當前情境 14
決策流程飛輪 15 驗證方法適用性 依據資訊提出 候選方案 依據異常行為 搜集資訊
3. 具體方案與適合情境
Tune your SQL command ⬡ 找出耗時不合理的指令 ⬡ 看看 query plan
做了哪些事 17
Cache ⬡ 同樣的資料不用每次都搜尋 ⬡ 存在快取中能減少資料庫的工作量 18
Denormalize ⬡ 基於正規化的原則資料庫不該有冗余 的欄位 ⬡ 但有些常用數值每次計算很耗資源, 同時變動較快也不適用 Cache ⬡ 比如
FB 貼文按讚數、TG 未讀訊息數 19
Scale-up ⬡ CPU, RAM 吃滿了? ⬡ 那就加更多資源或換成更高級別的 代管服務吧 20
Scale-out (Clustering) ⬡ 多幾台機器分攤工作量 ⬡ 相關概念包含讀寫分離、HA ⬡ 不過為了強一致性通常只有一個負 責接收寫入的節點 ⬡
較適用於 Read >> Write 情境 21
Write-ahead Log (WAL) PostgreSQL 的可靠性機制,在 執行 transaction 前須先像日誌 一樣寫入 Log
內永久儲存 22
23 Primary WAL PG node Standby WAL PG node Standby
WAL PG node pgpool-II Write Read Read Proxy Synchronization
24 Primary WAL PG node Standby WAL PG node Standby
WAL PG node pgpool-II Write Read Read Proxy Synchronization 10 W 100 R 10 W 50 R 50 R 10 W 10 W
讀寫分離 主要是分攤讀的工作量,正好目 前多數服務都是 Read >> Write,但仍須考量資料同步的延 遲 25
Indexes ⬡ 透過維護額外的資料結構讓查找效 率更高 ⬡ 但變相的會犧牲寫入效率 ⬡ 比如二分搜索樹、倒排索引 26
PG 常用 Index GIN 倒排索引,儲存關鍵字與所在文 本之間的映射關係,適合做關鍵 字搜尋 27
28 National Successful University Doc 1 National Failed University Doc
2
Forward Index ⬡ Doc1 : National, Successful, University ⬡ Doc2
: National, Failed, University 29
Inverted Index ⬡ National : Doc1, Doc2 ⬡ Successful :
Doc1 ⬡ University : Doc1, Doc2 ⬡ Failed : Doc2 30
PG 常用 Index BRIN 統計資訊邊界分群,比如時間範 圍、地理位置的 Bounding Box, 適用於銷售日誌或區域查詢 31
Lower Isolation Level ⬡ 根據對交易隔離的要求,資料庫有 多個不同的隔離等級 ⬡ 隔離越是嚴謹效能損失就越大,可 以思考所需要的等級 32
Isolation 層級 ⬡ Read Uncommitted ⬡ Read Committed ⬡ Repeatable
Read ⬡ Serilizable 33
34
Isolation 的主流實作策略 ⬡ Shared-exclusive Lock (SX Lock) ∙ MySQL, MS
SQL ⬡ Multiversion Concurrency Control (MVCC) ∙ PostgreSQL, Oracle 35
SX Lock ⬡ 每筆資料可發行多把 S Lock 和一把 X Lock ⬡
發行 S Lock 時不可有發行中的 X Lock,而發 行 X Lock 時不可有發行中的 S/X Lock ⬡ 只有 Read-Read 不會互相 block,Read-Write 和 Write-Write 都會 36
MVCC ⬡ 每筆紀錄更新或刪除時不直接改動當前資料, 而是新增一個新的版本或刪除標記 ⬡ 每次執行交易時,依據時間點控制該筆交易對 其他紀錄可見的版本 ⬡ 只有 Write-Write
會因為版本先後順序性而 被 block,而 Read-Write 不會 37
常聽到有人批評 PostgreSQL 做 Clustering 成效不如 MySQL ? ⬡ 讀寫分離解決了 MySQL
中 SX Lock 機制的 Read-Write block 問題,而 PostgreSQL 中 MVCC 機制沒這問題 ⬡ 他的 Read 流量沒有大到需要讀寫分離 ⬡ 他配置有問題 38
39 Primary WAL PG node Standby WAL PG node Standby
WAL PG node pgpool-II Write Read Read Proxy Synchronization 10 W 100 R 10 W 50 R 50 R 10 W 10 W
OLTP v.s. OLAP ⬡ 兩者之間有個很關鍵的行為差異,就 是 range scan ⬡ 計算
real time 指標、產報表都需要 ⬡ 資料庫儲存資料的結構影響很大 40
Index-organized Table 41
Heap Table 42
有沒有 Range Scan 差很多 ⬡ Heap Table 基本上要 Serial scan
⬡ 當你使用一個 OLTP server 做分析或報表,覺 得他做得很慢時,你可能需要另個 OLAP server 而不是開腦洞優化 OLTP server 43
The End