Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Copilot体験の実装に役立ちそうなSemantic interpreter論文 / Sem...
Search
r-kagaya
July 05, 2023
Technology
1
650
Copilot体験の実装に役立ちそうなSemantic interpreter論文 / Semantic Interpreter for copilot implementation
r-kagaya
July 05, 2023
Tweet
Share
More Decks by r-kagaya
See All by r-kagaya
MCPでVibe Working。そして、結局はContext Eng(略)/ Working with Vibe on MCP And Context Eng
rkaga
5
2.9k
一人でAIプロダクトを作るための工夫 〜技術選定・開発プロセス編〜 / I want AI to work harder
rkaga
14
3.3k
テストから始めるAgentic Coding 〜Claude Codeと共に行うTDD〜 / Agentic Coding starts with testing
rkaga
19
7.9k
コードの90%をAIが書く世界で何が待っているのか / What awaits us in a world where 90% of the code is written by AI
rkaga
57
37k
CursorとDevinが仲間!?AI駆動で新規プロダクト開発に挑んだ3ヶ月を振り返る / A Story of New Product Development with Cursor and Devin
rkaga
7
3.8k
データと事例で振り返るDevin導入の"リアル" / The Realities of Devin Reflected in Data and Case Studies
rkaga
3
5.5k
AIコーディングエージェントを 「使いこなす」ための実践知と現在地 in ログラス / How to Use AI Coding Agent in Loglass
rkaga
4
3.2k
AIコーディングワークフローの試行 〜AIエージェント×ワークフローでの自動化を目指して〜
rkaga
3
7.3k
Devin入門と最近のアップデートから見るDevinの進化 / Introduction to Devin and the Evolution of Devin as Seen in Recent Update
rkaga
11
7.7k
Other Decks in Technology
See All in Technology
Kill the Vibe?Architecture in the age of AI
stoth
1
140
AI開発の定着を推進するために揃えるべき前提
suguruooki
1
460
Claude Code はじめてガイド -1時間で学べるAI駆動開発の基本と実践-
oikon48
30
15k
2025 DORA Reportから読み解く!AIが映し出す、成果を出し続ける組織の共通点 #開発生産性_findy
takabow
2
870
Excelデータ分析で学ぶディメンショナルモデリング ~アジャイルデータモデリングへ向けて~ by @Kazaneya_PR / 20251126
kazaneya
PRO
3
730
名刺メーカーDevグループ 紹介資料
sansan33
PRO
0
970
20251127 BigQueryリモート関数で作る、お手軽AIバッチ実行環境
daimatz
0
390
私も懇親会は苦手でした ~苦手だからこそ懇親会を楽しむ方法~ / 20251127 Masaki Okuda
shift_evolve
PRO
4
480
ECMAScript仕様の最新動向: プロセスの変化と仕様のトレンド
uhyo
1
250
DGX SparkでローカルLLMをLangChainで動かした話
ruzia
1
180
Master Dataグループ紹介資料
sansan33
PRO
1
4k
"なるべくスケジューリングしない" を実現する "PreferNoSchedule" taint
superbrothers
0
130
Featured
See All Featured
Speed Design
sergeychernyshev
33
1.3k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
48
9.8k
Music & Morning Musume
bryan
46
7k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
16
1.8k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
659
61k
GitHub's CSS Performance
jonrohan
1032
470k
Learning to Love Humans: Emotional Interface Design
aarron
274
41k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
31
2.6k
The Power of CSS Pseudo Elements
geoffreycrofte
80
6.1k
RailsConf 2023
tenderlove
30
1.3k
Automating Front-end Workflow
addyosmani
1371
200k
Balancing Empowerment & Direction
lara
5
770
Transcript
1 Copilot体験の実装に役立ちそうな Semantic interpreter論文 2023.07.05 @r-kagaya LLM Meetup Tokyo #3
2 自己紹介 株式会社ログラスのソフトウェアエンジニア イネーブルメントチームの一員としてプロダクト組織の横断 課題に取り組んだ後、現在は生成AI/LLMチームの立ち上 げとLLMを用いた機能開発にトライ中 略歴 新卒で入社したヤフー株式会社でID連携システムの開発に携わった 後に、2022年に株式会社ログラスに入社 r-kagaya
@r-kagaya
3 最初にデモ
4 デモ
5 Copilot??
6 Copilot体験 (正直定義は深く考えず使ってます) ・AIアシスタントのような、何となくイメージに近そうな体験を備えたサービスは少しづつ増 えてきている ・システム側が意図を読み取って代わりにタスクをこなしてくれる体験? ・自然言語での指示は一つのパターン ・MS/Googleの二社が先行。LindyやAdeptなども良さげ ・価値の一つとして想定されるのは、利用ハードルの低下 ・Notionですら使いこなし術がバズるのに、いわんやBtoB
SaaSは
7 Copilot体験 Microsoft 365 Copilot https://xtech.nikkei.com/atcl/nxt/column/18/01679/060700115/ ・言わずと知れた代表格
8 Copilot体験 Google Duet AI https://support.google.com/docs/answer/13676332?hl=en https://it.impress.co.jp/mwimgs/7/1/-/img_7100b73084d5c6fec3acd de77e6e88b0137770.jpg ・Google Workspaceアプリに導入される
・Help me write(Googleドキュメント)で文章を自動で生成してくれたりする
9 Copilot体験 Windows Copilotも https://japan.cnet.com/article/35206022/ ・OpenAIのGPTベース ・Windowsデスクトップ常駐の対話型AI ・設定変更や各種操作、PDF文章要約といった作業を自然言語で指示可能 ・つまり進化したイルカ
10 Copilot体験 ThoughtSpot Sage https://www.thoughtspot.com/jp/product/sage ・検索形式でデータ抽出・分析が可能 ・SageがGPT-3を統合した新サービス(らしい)
11 どう作る?
12 どう作る? ミニミニミニ版を作ってみた時は 機能概要 ・経営データの集計・分析を行うレポート機能 ・レポートの生成を自然言語で行えるようにした ・ex: 2023年1月から3月の実績を教えて 内部的には ・スロットフィリング的なことをやってる
・レポート生成に必要な情報を自然言語から抽 出 ・抽出した情報を元にレポート生成
13 どう作る? 今ならFunction calling? "function_call": { "name": "genGraphFromReportData", arguments: {
"period": "[2022/04, 2022/05, 2022/06]", "amount": ["100", "200", "300"], "graph_type": "bar" } } ・想定ユースケースをひたすらFunction Calling ・レスポンスのfunction_callを見て、アプリケー ションコードを書く
14 どう作る? 良さげな論文 Natural Language Commanding via Program Synthesis https://www.itmedia.co.jp/news/articles/2306/14/news067.html
15 Semantic Interpreter
16 Semantic Interpreter Semantic Interpreter概要 ・ユーザーが入力した自然言語でPowerPointを動かす手法についての論文 ・OpenAIのtext-davinci-003モデルを利用 ざっくり流れ ・ユーザーが操作内容を入力 ・ex:
「キーポイントをすべて太くする」 ・自然言語 ⇔ Office Domain Specific Language(ODSL)への変換をLLMが担う ・Officeアプリケーション上におけるアクション表現に特化したドメイン固有言語 ・LLMフレンドリーな言語設計 ・ODSLを、アプリケーションAPI(Office-JS2など)で書かれたプログラムに変換・実行 参考: https://www.itmedia.co.jp/news/articles/2306/14/news067.html https://aiboom.net/archives/52746
17 Semantic Interpreter DSL設計 https://arxiv.org/abs/2306.03460 ・汎用プログラミング言語(JavaScript、C++など)ではなく、専用のDSLを設計 ・理由: スコープが広すぎる、安全なコードを担保するのが難しい、etc ・同じことを複数の方法で出来るようにしない方がいい ・ユーザーが簡単なundo操作で元に戻せるもの、不正な状態になる可能性がない操作に限定
・データ構造と抽象化 ・エンティティ ・ユーザーがアプリケーションで操作したい主要なデータ構造、has-a関係を持てる ・ex: slide → shape → textRange ・ステートメント ・エンティティに対する操作、関数 ・Select, Insert, format, delete
18 Semantic Interpreter 全体フロー https://arxiv.org/abs/2306.03460 ・プロンプト生成 ・カテゴリ分類 ・セマンティック検索 ・ODSL生成 ・ODSL
Interpreter ・アプリケーションコード生成
19 Semantic Interpreter ODSL https://arxiv.org/abs/2306.03460
20 ちなみにプロンプト https://arxiv.org/abs/2306.03460 ・エンティティと追加コンテキストが必 要か判定 ・エンティティやコンテキストの有無を 元にプロンプトを出しわけてるっぽい
21 ちなみにプロンプト https://arxiv.org/abs/2306.03460 ・ODSLを生成 ・エンティティ等の値に応じて、few shotのサンプルは動的に変化
22 まとめ • Copilotな体験は(少しづつ and ほぼMS/Googleだが)増えつつある ◦ システム側が意図を読み取って代わりにタスクをこなしてくれる体 験? ◦
一つのパターンが自然言語の指示 • 価値の一つとして、ユーザーの利用ハードルの低下はありそう • 参考になるアプローチとして「Semantic Interpreter」を紹介 • プロンプト構築部分などの工夫も書かれてるので興味あればぜひ ◦ https://arxiv.org/abs/2306.03460 • 読み終わらず/資料準備追いつかずだったが、色々書いてて面白い
23