Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
MDS - Chancen für Städte
Search
robbi5
September 02, 2019
Research
1
51
MDS - Chancen für Städte
Überblick über die Mobility Data Specification am 2. Sep. 2019 beim CityLAB Berlin
robbi5
September 02, 2019
Tweet
Share
More Decks by robbi5
See All by robbi5
36c3: Verkehrswende selber hacken, 2019-12-30
robbi5
1
74
#ddjbw - mobilitätsdaten, 2019-10-22
robbi5
0
65
radforschung: Slidedeck Verkehrswende, Version 3
robbi5
0
610
radforschung: Slidedeck Verkehrswende, Version 1
robbi5
0
500
radforschung: Slidedeck Verkehrswende, Version 2
robbi5
0
510
bikeshed - Digital Mobility Hackathon Stuttgart, 2017-04-21
robbi5
1
3.9k
kleineAnfragen, sehrgutachten und stellungnah.me - Bundesdatenschau (mrmcd 2017), 2017-09-02
robbi5
0
130
https.jetzt! - WikiCon 2016, Kornwestheim, 2016-09-17
robbi5
0
79
sehrgutachten und kleineAnfragen, OpenTechSummit Berlin, 2016-05-05
robbi5
0
130
Other Decks in Research
See All in Research
AIスパコン「さくらONE」のLLM学習ベンチマークによる性能評価 / SAKURAONE LLM Training Benchmarking
yuukit
2
850
若手研究者が国際会議(例えばIROS)でワークショップを企画するメリットと成功法!
tanichu
0
110
Submeter-level land cover mapping of Japan
satai
3
510
MetaEarth: A Generative Foundation Model for Global-Scale Remote Sensing Image Generation
satai
4
420
論文読み会 SNLP2025 Learning Dynamics of LLM Finetuning. In: ICLR 2025
s_mizuki_nlp
0
340
Adaptive Experimental Design for Efficient Average Treatment Effect Estimation and Treatment Choice
masakat0
0
140
Minimax and Bayes Optimal Best-arm Identification: Adaptive Experimental Design for Treatment Choice
masakat0
0
190
大学見本市2025 JSTさきがけ事業セミナー「顔の見えないセンシング技術:多様なセンサにもとづく個人情報に配慮した人物状態推定」
miso2024
0
180
CoRL2025速報
rpc
2
3.2k
When Learned Data Structures Meet Computer Vision
matsui_528
1
650
学習型データ構造:機械学習を内包する新しいデータ構造の設計と解析
matsui_528
4
1.4k
Mamba-in-Mamba: Centralized Mamba-Cross-Scan in Tokenized Mamba Model for Hyperspectral Image Classification
satai
3
200
Featured
See All Featured
Optimising Largest Contentful Paint
csswizardry
37
3.5k
We Have a Design System, Now What?
morganepeng
54
7.9k
Writing Fast Ruby
sferik
630
62k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
34
2.3k
Git: the NoSQL Database
bkeepers
PRO
432
66k
Java REST API Framework Comparison - PWX 2021
mraible
34
9k
Faster Mobile Websites
deanohume
310
31k
RailsConf 2023
tenderlove
30
1.3k
Building Flexible Design Systems
yeseniaperezcruz
329
39k
4 Signs Your Business is Dying
shpigford
186
22k
Fireside Chat
paigeccino
41
3.7k
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
10
680
Transcript
MDS Chancen für Städte
https://twitter.com/madeline/status/1026977578551103488
https://www.rbb24.de/wirtschaft/beitrag/2019/07/e-scooter-leihroller-berlin-datenanalyse-innenstadt-aussenbezirke.html
https://www.rbb24.de/politik/beitrag/2019/08/9000-e-scooter-in-berlin-mitte-friedrichshain-kreuzberg.html
None
Tiles © Mapbox, Daten © OpenStreetMap-Mitwirkende
None
MDS Mobility Data Specification
https://www.youtube.com/watch?v=FpGboFSSddo
github.com/CityOfLosAngeles/mobility-data-specification
None
provider agency
provider agency Tiles © Mapbox, Daten © OpenStreetMap-Mitwirkende
None
geojson.io
provider agency Tiles © Mapbox, Daten © OpenStreetMap-Mitwirkende
None
provider agency Tiles © Mapbox, Daten © OpenStreetMap-Mitwirkende
provider agency Tiles © Mapbox, Daten © OpenStreetMap-Mitwirkende
None
radforschung.org/log