Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
SmartNews Adsの配信最適化のお話
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
Ryoichi Nishio
June 20, 2018
Research
4
6.2k
SmartNews Adsの配信最適化のお話
SmartNews Adsでの運用型広告の自動入札機能における、入札価格の最適化の理論について解説します。
(Line Ad Meetup 2018/06/20 にて発表)
Ryoichi Nishio
June 20, 2018
Tweet
Share
Other Decks in Research
See All in Research
Proposal of an Information Delivery Method for Electronic Paper Signage Using Human Mobility as the Communication Medium / ICCE-Asia 2025
yumulab
0
170
Thirty Years of Progress in Speech Synthesis: A Personal Perspective on the Past, Present, and Future
ktokuda
0
170
HU Berlin: Industrial-Strength Natural Language Processing with spaCy and Prodigy
inesmontani
PRO
0
230
視覚から身体性を持つAIへ: 巧緻な動作の3次元理解
tkhkaeio
0
190
存立危機事態の再検討
jimboken
0
240
その推薦システムの評価指標、ユーザーの感覚とズレてるかも
kuri8ive
1
320
Aurora Serverless からAurora Serverless v2への課題と知見を論文から読み解く/Understanding the challenges and insights of moving from Aurora Serverless to Aurora Serverless v2 from a paper
bootjp
6
1.5k
A History of Approximate Nearest Neighbor Search from an Applications Perspective
matsui_528
1
160
Agentic AI フレームワーク戦略白書 (2025年度版)
mickey_kubo
1
120
R&Dチームを起ち上げる
shibuiwilliam
1
170
LLM-Assisted Semantic Guidance for Sparsely Annotated Remote Sensing Object Detection
satai
3
470
生成AIとうまく付き合うためのプロンプトエンジニアリング
yuri_ohashi
0
140
Featured
See All Featured
Balancing Empowerment & Direction
lara
5
900
Navigating Algorithm Shifts & AI Overviews - #SMXNext
aleyda
0
1.1k
Designing Experiences People Love
moore
144
24k
Efficient Content Optimization with Google Search Console & Apps Script
katarinadahlin
PRO
1
330
Code Reviewing Like a Champion
maltzj
527
40k
Designing for Performance
lara
610
70k
Digital Ethics as a Driver of Design Innovation
axbom
PRO
1
190
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
55
3.3k
16th Malabo Montpellier Forum Presentation
akademiya2063
PRO
0
53
Code Review Best Practice
trishagee
74
20k
Abbi's Birthday
coloredviolet
1
4.8k
My Coaching Mixtape
mlcsv
0
51
Transcript
SmartNews Ads ͷ৴࠷దԽͷ͓ ඌ ྄Ұ June 20, 2018 εϚʔτχϡʔεגࣜձࣾ
ࣗݾհ • 2010 – 2013 ૉཻࢠཧͷത࢜ɾ ϙευΫ • 2013 εϚʔτχϡʔεೖࣾ
ΞϧΰϦζϜͷઃܭ͕ಘҙͰɺ 2017 ͔Βࠂͷ৴࠷దԽʹऔΓ ΜͰ͍·͢ɻࠂ։ൃνʔϜͷΤϯ δχΞϦϯάϚωʔδϟΛ͍ͯ͠·͢ɻ 1 / 23
SmartNews ͱ SmartNews Ads ͷ հ
SmartNews ͷհ ੜ׆ऀͷʮຖͷश׳ʯ ຊ࠷େͷχϡʔεΞϓϦ ݄ؒສ ΞΫςΟϒϢʔβʔ Ҏ্ ఏܞഔମ 4NBSU'PSNBUରԠ
̍ར༻ ਓ͋ͨΓ ˞݄ݱࡏ ܦฏۉ͕Ұ࣌ٸམ ੈքג҆ͷݯ શࠃ৽ฉ ܦࡁใΦϯϥΠϯ टձஊͰΞδΞͷ ྗਤͲ͏มΘΔ 2 / 23
SmartNews Ads ͷհ SmartNews Mixi ʹࠂ৴Λߦͳ͍·͢ 3 / 23
७ࠂͱӡ༻ܕࠂ ७ࠂ ৴Λଋ͢Δ (༧ܕ) ӡ༻ܕࠂ ࠂओ͕ఆΊͨೖࡳՁ֨ʹԠͯ͡ɺ৴͕૿ݮ͢Δ (ΦʔΫ γϣϯܕ) ࣗಈೖࡳػೳ (oCPC)
͕͋Γ·͢ 4 / 23
७ࠂͱӡ༻ܕࠂ ७ࠂ ৴Λଋ͢Δ (༧ܕ) ӡ༻ܕࠂ ࠂओ͕ఆΊͨೖࡳՁ֨ʹԠͯ͡ɺ৴͕૿ݮ͢Δ (ΦʔΫ γϣϯܕ) ࣗಈೖࡳػೳ (oCPC)
͕͋Γ·͢ ࠓͷςʔϚӡ༻ܕࠂͷࣗಈೖࡳػೳͰ͢ʂΤϯδχΞϦϯ άͷػցֶशͷҰͤͣʹɺ࠷దೖࡳՁ֨Λܾఆ͢Δཧ ͷհΛ͠·͢ 4 / 23
ΦʔΫγϣϯܕࠂͷੈք
CV ൃੜ·Ͱͷ 3 ͭͷน (WR, CTR, CVR) ӡ༻ܕࠂʹ͓͚ΔࠂओͷతɺCV Λൃੜͤ͞Δ͜ͱ •
imp: ݟͨ (දࣔͨ͠) • click: ΫϦοΫ • cv: Πϯετʔϧɺߪ ೖͳͲ auction 1 ճʹର͢Δ cv ൃੜ֬ cv = WR · CTR · CVR 5 / 23
ೖࡳՁ֨ b ͱίετ • ࠂओɺೖࡳՁ֨ (bid price) b Λࣗ༝ʹઃఆͰ͖Δ •
ೖࡳՁ֨ b Λ্͛Δͱ auction Ͱউͪ͘͢ͳΔ (ޙड़) ͕ɺ ͦͷίετ૿͑ͯ͠·͏ɻ • ͜͜Ͱ՝ۚϙΠϯτ click ͱ͢Δɻ(imp ͷέʔε͋Δ) ΫϦοΫ୯ՁͱೖࡳՁ֨ • 1st price auction: ΫϦοΫ୯Ձ = ೖࡳՁ֨ b • 2nd price auction: ΫϦοΫ୯Ձ ≤ ೖࡳՁ֨ b auction 1 ճ͋ͨΓͷίετͷظ cost ≤ WR · CTR · b 6 / 23
Auction ͱείΞ auction: ͦΕͧΕͷࠂʹείΞΛ༩͑ͯιʔτ͢Δ είΞ͕ߴ͍ࠂͷॱʹɺimp ͷൃੜ͍͢͠ʹஔ͢Δ (RTB ͱҧͬͯɺෳͷࠂΛฒ͍ͯ͘) είΞͷఆٛ (ྫ)
score = CTR · b : imp 1 ճ͋ͨΓͷظച্ (ͷ্ݶ) • CTR ༧ଌΛ͏ • είΞ b ʹൺྫ͢ΔͷͰɺb ͕ߴ͍΄ͲΦʔΫγϣϯʹ উͬͯ imp ͕ൃੜ͍͢͠ = WR b ͷ૿Ճؔ 7 / 23
·ͱΊ auction 1 ճ͋ͨΓͷ cv ͱ cost ͷظ (࠶ܝ) cv
= WR(b) · CTR · CVR cost ≤ WR(b) · CTR · b ࠂओʹͱͬͯͷɺb Λ্͛Δ͜ͱͷϝϦοτɾσϝϦοτ • cv ↑ (Good) • cost ↑, CPA = cost/cv ↑ (Bad) : ࠂओʹͱͬͯͷɺ࠷దͳ b ͱ? യવͱݴ͑ɺCV ͱ cost(or CPA) ͱͷόϥϯεΛߟ͑ͯ b ΛܾΊΕྑ͍ɻ۩ମతʹͲͷΑ͏ͳΛղ͚ྑ͍ͷ ͔ʁ͜ΕΛࠓ͔Βߟ͍͖͑ͯ·͠ΐ͏ʂ 8 / 23
ࣗಈೖࡳ (oCPC)
Ҏ߱ͷɺ Weinan Zhang, Shuai Yuan, Jun Wang Optimal Real-Time Bidding
for Display Advertising (2014) ͱ͍͏จͷ༰ΛΞϨϯδͨ͠ͷʹͳ͍ͬͯ·͢ 9 / 23
Auction ͝ͱͷ”࠷దͳೖࡳՁ֨”ΛͲ͏ఆࣜԽ͢Δ? auction ͷಛϕΫτϧΛ x ͱ͢Δɻ(ࠂϦΫΤετΛߦͳͬͯ ͍ΔϢʔβʔͷଐੑߦಈཤྺͳͲ) ೖࡳՁ֨ b
x ͷؔͱ͢Δ ఆࣜԽͷํ ଋറ͖݅ͷ࠷దԽͱΈͳ͢ɻ ࣍ͷଋറ݅Λຬͨ͢ൣғͰɺظ CV ͕࠷େԽ͞ΕΔΑ͏ ͳɺؔ b(x) ͕࠷దͳೖࡳՁ֨Ͱ͋Δ ଋറ݅ CPA ͷظ͕ɺઃఆ͞Εͨඪ CPA(tCPA) ʹͳΔ (ࠓͷͰ৮Εͳ͍͕) ଋറ݅ͱͯ࣍͠ߟ͑ΒΕΔ ଋറ݅’ 1 ͷظ Cost ͕ઃఆ͞Εͨ༧ࢉ B ҎԼʹͳΔ 10 / 23
ͷֶతఆࣜԽ • ͋ΔΩϟϯϖʔϯ c ʹͯٞ͠ΛਐΊΔɻ༷ʑͳม ʹఴࣈ c Λ͚ͭΔ͖ͱ͜ΖΛɺݟ͢͞ͷͨΊʹলུ͢Δ • auction
ͷಛϕΫτϧ x ͷ֬ີΛ f (x) ͱ͢Δ (࣍ݩΛ D ͱ͢Δ) • WR b ͱ x ͷɺCTR ͱ CVR x ͷؔͰ͋Δͱ͢Δ • (ෆ߸͕ѻ͍ʹ͍͘ͷͰ) 1st price auction Ͱ͋Δͱ͢Δ auction 1 ճ͋ͨΓͷ CV ͱ Cost ͷظ (x ͷΛߟྀ) CV [b] = ∫ dDx f (x)WR(b(x), x)CTR(x)CVR(x) COST[b] = ∫ dDx f (x)WR(b(x), x)CTR(x)b(x) 11 / 23
ͷֶతఆࣜԽ (࠶ܝ)CV ͱ Cost ͷظ CV [b] = ∫ dDx
f (x)WR(b(x), x)CTR(x)CVR(x) COST[b] = ∫ dDx f (x)WR(b(x), x)CTR(x)b(x) CPA ͷظ͕ઃఆ͞Εͨඪ CPA(tCPA) ʹͳΔ݅ COST[b] − tCPA · CV [b] = 0 (1) ଋറ݅ (1) Λຬͨ͢ൣғͰɺCV [b] Λ࠷େԽ͢Δؔ b(x) ͕ ࠷దͳೖࡳՁ֨Ͱ͋Δɻ: b(x) ΛٻΊΑɻ 12 / 23
Ұճཱͪࢭ·ͬͯݕ౼͢Δ ଋറ݅ COST[b] − tCPA · CV [b] = ∫
dDx f (x)WR(b(x), x)CTR(x) [b(x) − tCPA · CVR(x)] = 0 ҎԼͷ b(x) ඃੵ͕ؔ 0 ʹͳΔͷͰଋറ݅Λຬͨ͢ b(x) = tCPA · CVR(x) (2) ࣜ (2) ͕ CV [b] Λ࠷େԽ͢Δͷ͔?ͦΕͱɺ࠷దͳೖࡳՁ֨ ผʹ͋Δͷ͔? ͜ͷʹ͜Ε͔Β͑·͢ʂ 13 / 23
४උ 1: ଋറ͖݅࠷େԽϥάϥϯδϡͷະఆ๏Ͱղ͘ ྫ 1 f (x, y) Λ࠷େԽ͢Δ (x,
y) Λ୳ͤ ∂f ∂x = 0 , ∂f ∂y = 0 ྫ 2 ଋറ݅ g(x, y) = 0 ͕͋Δͱ͖ʹ f (x, y) Λ࠷େԽ͢Δ (x, y) Λ୳ͤ ϥάϥϯδϡͷະఆ๏ (ϥάϥδΞϯ L Λఆٛ͠ɺ͋ͱ ಉ༷ʹඍΛ 0 ͱ͢ΕΑ͍) L(x, y; λ) ≡ f (x, y) + λg(x, y) ∂L ∂x = 0 , ∂L ∂y = 0 , ∂L ∂λ = 0 14 / 23
४උ 2: ൚ؔͱม ؔͱ൚ؔ ؔͱΛ༩͑ΔͱΛฦ͢ͷɻ ྫ: f (x) = x2
ͱ͢Δɻf (x) x ͷؔͰ͋Δɻ ൚ؔͱɺؔΛ༩͑ΔͱΛฦ͢ͷɻ ྫ: I[f ] = ∫ dx(f (x))2 ͱ͢ΔɻI[f ] f ͷ൚ؔͰ͋Δɻ CV [b], COST[b] b ͷ൚ؔͰ͋Δ มͱɺ൚ؔͷඍͷ͜ͱͰ͋Δ ྫ: f (x) = x2 Λ x Ͱඍ͢Δͱ? ∂f ∂x = 2x ྫ: I[f ] = ∫ dx(f (x))2 Λ f Ͱม͢Δͱ? δI δf (x) = 2f (x) (ඃੵؔ f 2 Λ f Ͱඍ͢Ε͍͍) 15 / 23
४උ͕Ͱ͖ͨͷͰɺ࠷దͳೖࡳՁ֨ΛٻΊ͍ͯ͜͏ ϥάϥδΞϯ: L b ͷ൚ؔɺ͔ͭɺλ ͷؔ L[b; λ] ≡
CV [b] + λ(SALES[b] − tCPA · CV [b]) ҎԼΛຬͨ͢ b(x) ͕࠷దͳೖࡳՁ֨Ͱ͋Δ δL δb(x) = 0, ∂L ∂λ = 0 16 / 23
४උ͕Ͱ͖ͨͷͰɺ࠷దͳೖࡳՁ֨ΛٻΊ͍ͯ͜͏ ϥάϥδΞϯ: L b ͷ൚ؔɺ͔ͭɺλ ͷؔ L[b; λ] ≡
CV [b] + λ(SALES[b] − tCPA · CV [b]) ҎԼΛຬͨ͢ b(x) ͕࠷దͳೖࡳՁ֨Ͱ͋Δ δL δb(x) = 0, ∂L ∂λ = 0 ༨ஊ ʮ࠷খ࡞༻ͷݪཧʯΛͬͯ b(x) ͷӡಈํఔࣜΛٻΊΔͱ͍ ͏ཧֶͷͱಉ༷Ͱ͢ 16 / 23
్தܭࢉ: ڵຯͷ͋Δਓ͚͍ͩͬͯͩ͘͞ ݟ͢͞ͷͨΊҎԼͷΑ͏ʹུه͢Δɻ WR′(b, x) = ∂WR ∂b (b, x)
มΛܭࢉ... δL δb(x) = f (x)WR′(b(x), x)CTR(x)CVR(x) + λf (x)CTR(x) × [ WR′(b(x), x)b(x) + WR(b(x), x) − tCPA WR′(b(x), x)CVR(x) ] = 0 17 / 23
͜Ε͕࠷దͳೖࡳՁ֨ͩ! 18 / 23
͜Ε͕࠷దͳೖࡳՁ֨ͩ! ࠷దͳೖࡳՁ֨ b(x) ͕ຬͨ͢ํఔࣜ ( b(x) + WR(b(x), x) WR′(b(x),
x) ) = (λ−1 − tCPA) · CVR(x) (3) ∫ dDx f (x)WR(b(x), x)CTR(x) [b(x) − tCPA · CVR(x)] = 0 (4) ࣜ (3) ʹΑͬͯ b(x) ͕ x ʹΑΒͳ͍ λ ʹґଘͨ͠ܗͰٻ·Δɻ ͜ΕΛࣜ (4) ʹೖ͢Δ͜ͱͰ λ ͕ܾఆ͞ΕΔɻ ͜ΕҎ্ͷղੳܭࢉ WR(b, x) ͷؔܗΛܾΊͳ͍ͱਐΊͳ͍ɻ 18 / 23
Winning-Rate WR(b, x) ʹ͍ͭͯ WR(b, x) ͷఆٛ (෮श) ೖࡳՁ֨ b
Ͱ auction ʹࢀՃͨ͠ͱ͖ʹɺimp ͕ൃੜ͢Δ֬ɻ • imp ൃੜ֬ࠂܝࡌҐஔ·ͰͷεΫϩʔϧྔͳͲʹґଘ ͢ΔͷͰɺαʔϏεʹΑͬͯେ͖͘ҧ͏ͣ • imp ൃੜ֬Ϣʔβʔͷੑ࣭ (x) ʹڧ͘ґଘ͢Δ • auction ʹࢀՃ͢ΔଞͷࠂͷྔͳͲʹґଘ͢Δ • b ґଘੑ score = CTR(x) · b ͷܗͰݱΕΔͣ ϩάੳͳͲ͔Β WR(b, x) Λܾఆ͢Δͷ͕ਅ໘ͳํ๏ͩΖ͏ɻ ͜͜ͰղੳܭࢉՄೳͳϞσϧؔΛͯΊͯΠϝʔδΛ͑ ͍ͨɻ 19 / 23
έʔε 1: b ͷ͖ؔ ࣍ͷܗΛԾఆͯ͠ΈΑ͏ WR(b, x) = G(x)(CTR(x)b)α G(x)
x ͷҙͷਖ਼ͷؔɺα ҙͷਖ਼ͷఆɻ ͜ͷ߹ɺࣜ (3),(4) ΑΓɺ࠷దͳ b(x) ࣜ (2) b(x) = tCPA · CVR(x) Ͱ͋Δ͜ͱ͕ࣔ͞ΕΔ (εΰΠ: G(x), α, f (x), CTR(x) ʹґଘ͠ͳ͍!) 20 / 23
έʔε 2: ্ݶ͋Γͷܗ έʔε 1 ͷɺWR ֬ͳͷʹେ͖ͳ b Ͱ 1
Λ͑ͯ͠ ·͏Ͱ͋Δɻ(b ͕େ͖͗͢Δ߹ഁ͢Δɻ) ͜ͷΛվળ ͢ΔͨΊ࣍ͷܗΛԾఆͯ͠ΈΑ͏ Ծఆ (b → ∞ ͕༗ݶͳྫ) WR(b, x) = G(x) CTR(x)b c + CTR(x)b G(x) x ͷҙͷਖ਼ͷؔɺc ҙͷਖ਼ͷఆɻ ࣜ (3) ͔ΒҎԼ͕ٻ·Δɻ(͜ΕΛࣜ (4) ʹೖ͢Δ͜ͱͰ λ ͕ఆ ·Δ) b(x) = c CTR(x) ( −1 + √ 1 + CTR(x) c (tCPA − λ−1) CVR(x) ) 21 / 23
έʔε 1,2 ͷൺֱ case2 ͰɺείΞ (= CTR · b) ΛͲΜͳʹ্͛ͯ
WR ʹ্ ݶ͕͋ΔͷͰɺCTR, CVR ͕ྑ͍߹ʹɺ૬ରతʹೖࡳՁ֨Λ্ ͛͗͢ͳ͍Α͏ʹ͠ɺͦͷ CTR, CVR ͕͍߹ʹߴΊʹೖ ࡳ͢Δͷ͕࠷దઓུʹͳΔɻ 22 / 23
·ͱΊ ࡾߦ·ͱΊ • ೖࡳՁ֨ͷ࠷దԽϥάϥϯδϡͷະఆ๏ͱม๏Λ ͬͯղ͚Δ • WR ΛΔ͜ͱ͕࣮ॏཁͩ • WR
ͷݟ͕͋·Γͳ͚Εɺb(x) = tCPA · CVR(x) ͱ͢ Δͷ͕࣍ળͷࡦͱͯ͠༗ޮͩ (έʔε 1) ͨͩ͠ຊͷ࠷ద ͳೖࡳՁ֨ͬͱෳࡶͳܗΛ͍ͯ͠Δ (ྫ:έʔε 2) Ԡ༻ྫ • ༧ࢉΛଋറ݅ͱ͢Δ߹ • ϑϦʔΫΤϯγʔ੍ԼͰͷϦʔν࠷େԽ 23 / 23