Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
SmartNews Adsの配信最適化のお話
Search
Ryoichi Nishio
June 20, 2018
Research
4
5.9k
SmartNews Adsの配信最適化のお話
SmartNews Adsでの運用型広告の自動入札機能における、入札価格の最適化の理論について解説します。
(Line Ad Meetup 2018/06/20 にて発表)
Ryoichi Nishio
June 20, 2018
Tweet
Share
Other Decks in Research
See All in Research
アプリケーションから知るモデルマージ
maguro27
0
170
システムから変える 自分と世界を変えるシステムチェンジの方法論 / Systems Change Approaches
dmattsun
3
900
ECCV2024読み会: Minimalist Vision with Freeform Pixels
hsmtta
1
300
The Relevance of UX for Conversion and Monetisation
itasohaakhib1
0
110
Weekly AI Agents News! 8月号 プロダクト/ニュースのアーカイブ
masatoto
1
210
Language is primarily a tool for communication rather than thought
ryou0634
4
790
Zipf 白色化:タイプとトークンの区別がもたらす良質な埋め込み空間と損失関数
eumesy
PRO
8
1k
The Fellowship of Trust in AI
tomzimmermann
0
150
Weekly AI Agents News!
masatoto
26
35k
Leveraging LLMs for Unsupervised Dense Retriever Ranking (SIGIR 2024)
kampersanda
2
250
国際会議ACL2024参加報告
chemical_tree
1
350
第79回 産総研人工知能セミナー 発表資料
agiats
2
180
Featured
See All Featured
Put a Button on it: Removing Barriers to Going Fast.
kastner
59
3.6k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
665
120k
The Language of Interfaces
destraynor
154
24k
Build your cross-platform service in a week with App Engine
jlugia
229
18k
KATA
mclloyd
29
14k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
111
49k
Fantastic passwords and where to find them - at NoRuKo
philnash
50
2.9k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
38
1.9k
GitHub's CSS Performance
jonrohan
1030
460k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
17
2.3k
Optimising Largest Contentful Paint
csswizardry
33
3k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
48
2.2k
Transcript
SmartNews Ads ͷ৴࠷దԽͷ͓ ඌ ྄Ұ June 20, 2018 εϚʔτχϡʔεגࣜձࣾ
ࣗݾհ • 2010 – 2013 ૉཻࢠཧͷത࢜ɾ ϙευΫ • 2013 εϚʔτχϡʔεೖࣾ
ΞϧΰϦζϜͷઃܭ͕ಘҙͰɺ 2017 ͔Βࠂͷ৴࠷దԽʹऔΓ ΜͰ͍·͢ɻࠂ։ൃνʔϜͷΤϯ δχΞϦϯάϚωʔδϟΛ͍ͯ͠·͢ɻ 1 / 23
SmartNews ͱ SmartNews Ads ͷ հ
SmartNews ͷհ ੜ׆ऀͷʮຖͷश׳ʯ ຊ࠷େͷχϡʔεΞϓϦ ݄ؒສ ΞΫςΟϒϢʔβʔ Ҏ্ ఏܞഔମ 4NBSU'PSNBUରԠ
̍ར༻ ਓ͋ͨΓ ˞݄ݱࡏ ܦฏۉ͕Ұ࣌ٸམ ੈքג҆ͷݯ શࠃ৽ฉ ܦࡁใΦϯϥΠϯ टձஊͰΞδΞͷ ྗਤͲ͏มΘΔ 2 / 23
SmartNews Ads ͷհ SmartNews Mixi ʹࠂ৴Λߦͳ͍·͢ 3 / 23
७ࠂͱӡ༻ܕࠂ ७ࠂ ৴Λଋ͢Δ (༧ܕ) ӡ༻ܕࠂ ࠂओ͕ఆΊͨೖࡳՁ֨ʹԠͯ͡ɺ৴͕૿ݮ͢Δ (ΦʔΫ γϣϯܕ) ࣗಈೖࡳػೳ (oCPC)
͕͋Γ·͢ 4 / 23
७ࠂͱӡ༻ܕࠂ ७ࠂ ৴Λଋ͢Δ (༧ܕ) ӡ༻ܕࠂ ࠂओ͕ఆΊͨೖࡳՁ֨ʹԠͯ͡ɺ৴͕૿ݮ͢Δ (ΦʔΫ γϣϯܕ) ࣗಈೖࡳػೳ (oCPC)
͕͋Γ·͢ ࠓͷςʔϚӡ༻ܕࠂͷࣗಈೖࡳػೳͰ͢ʂΤϯδχΞϦϯ άͷػցֶशͷҰͤͣʹɺ࠷దೖࡳՁ֨Λܾఆ͢Δཧ ͷհΛ͠·͢ 4 / 23
ΦʔΫγϣϯܕࠂͷੈք
CV ൃੜ·Ͱͷ 3 ͭͷน (WR, CTR, CVR) ӡ༻ܕࠂʹ͓͚ΔࠂओͷతɺCV Λൃੜͤ͞Δ͜ͱ •
imp: ݟͨ (දࣔͨ͠) • click: ΫϦοΫ • cv: Πϯετʔϧɺߪ ೖͳͲ auction 1 ճʹର͢Δ cv ൃੜ֬ cv = WR · CTR · CVR 5 / 23
ೖࡳՁ֨ b ͱίετ • ࠂओɺೖࡳՁ֨ (bid price) b Λࣗ༝ʹઃఆͰ͖Δ •
ೖࡳՁ֨ b Λ্͛Δͱ auction Ͱউͪ͘͢ͳΔ (ޙड़) ͕ɺ ͦͷίετ૿͑ͯ͠·͏ɻ • ͜͜Ͱ՝ۚϙΠϯτ click ͱ͢Δɻ(imp ͷέʔε͋Δ) ΫϦοΫ୯ՁͱೖࡳՁ֨ • 1st price auction: ΫϦοΫ୯Ձ = ೖࡳՁ֨ b • 2nd price auction: ΫϦοΫ୯Ձ ≤ ೖࡳՁ֨ b auction 1 ճ͋ͨΓͷίετͷظ cost ≤ WR · CTR · b 6 / 23
Auction ͱείΞ auction: ͦΕͧΕͷࠂʹείΞΛ༩͑ͯιʔτ͢Δ είΞ͕ߴ͍ࠂͷॱʹɺimp ͷൃੜ͍͢͠ʹஔ͢Δ (RTB ͱҧͬͯɺෳͷࠂΛฒ͍ͯ͘) είΞͷఆٛ (ྫ)
score = CTR · b : imp 1 ճ͋ͨΓͷظച্ (ͷ্ݶ) • CTR ༧ଌΛ͏ • είΞ b ʹൺྫ͢ΔͷͰɺb ͕ߴ͍΄ͲΦʔΫγϣϯʹ উͬͯ imp ͕ൃੜ͍͢͠ = WR b ͷ૿Ճؔ 7 / 23
·ͱΊ auction 1 ճ͋ͨΓͷ cv ͱ cost ͷظ (࠶ܝ) cv
= WR(b) · CTR · CVR cost ≤ WR(b) · CTR · b ࠂओʹͱͬͯͷɺb Λ্͛Δ͜ͱͷϝϦοτɾσϝϦοτ • cv ↑ (Good) • cost ↑, CPA = cost/cv ↑ (Bad) : ࠂओʹͱͬͯͷɺ࠷దͳ b ͱ? യવͱݴ͑ɺCV ͱ cost(or CPA) ͱͷόϥϯεΛߟ͑ͯ b ΛܾΊΕྑ͍ɻ۩ମతʹͲͷΑ͏ͳΛղ͚ྑ͍ͷ ͔ʁ͜ΕΛࠓ͔Βߟ͍͖͑ͯ·͠ΐ͏ʂ 8 / 23
ࣗಈೖࡳ (oCPC)
Ҏ߱ͷɺ Weinan Zhang, Shuai Yuan, Jun Wang Optimal Real-Time Bidding
for Display Advertising (2014) ͱ͍͏จͷ༰ΛΞϨϯδͨ͠ͷʹͳ͍ͬͯ·͢ 9 / 23
Auction ͝ͱͷ”࠷దͳೖࡳՁ֨”ΛͲ͏ఆࣜԽ͢Δ? auction ͷಛϕΫτϧΛ x ͱ͢Δɻ(ࠂϦΫΤετΛߦͳͬͯ ͍ΔϢʔβʔͷଐੑߦಈཤྺͳͲ) ೖࡳՁ֨ b
x ͷؔͱ͢Δ ఆࣜԽͷํ ଋറ͖݅ͷ࠷దԽͱΈͳ͢ɻ ࣍ͷଋറ݅Λຬͨ͢ൣғͰɺظ CV ͕࠷େԽ͞ΕΔΑ͏ ͳɺؔ b(x) ͕࠷దͳೖࡳՁ֨Ͱ͋Δ ଋറ݅ CPA ͷظ͕ɺઃఆ͞Εͨඪ CPA(tCPA) ʹͳΔ (ࠓͷͰ৮Εͳ͍͕) ଋറ݅ͱͯ࣍͠ߟ͑ΒΕΔ ଋറ݅’ 1 ͷظ Cost ͕ઃఆ͞Εͨ༧ࢉ B ҎԼʹͳΔ 10 / 23
ͷֶతఆࣜԽ • ͋ΔΩϟϯϖʔϯ c ʹͯٞ͠ΛਐΊΔɻ༷ʑͳม ʹఴࣈ c Λ͚ͭΔ͖ͱ͜ΖΛɺݟ͢͞ͷͨΊʹলུ͢Δ • auction
ͷಛϕΫτϧ x ͷ֬ີΛ f (x) ͱ͢Δ (࣍ݩΛ D ͱ͢Δ) • WR b ͱ x ͷɺCTR ͱ CVR x ͷؔͰ͋Δͱ͢Δ • (ෆ߸͕ѻ͍ʹ͍͘ͷͰ) 1st price auction Ͱ͋Δͱ͢Δ auction 1 ճ͋ͨΓͷ CV ͱ Cost ͷظ (x ͷΛߟྀ) CV [b] = ∫ dDx f (x)WR(b(x), x)CTR(x)CVR(x) COST[b] = ∫ dDx f (x)WR(b(x), x)CTR(x)b(x) 11 / 23
ͷֶతఆࣜԽ (࠶ܝ)CV ͱ Cost ͷظ CV [b] = ∫ dDx
f (x)WR(b(x), x)CTR(x)CVR(x) COST[b] = ∫ dDx f (x)WR(b(x), x)CTR(x)b(x) CPA ͷظ͕ઃఆ͞Εͨඪ CPA(tCPA) ʹͳΔ݅ COST[b] − tCPA · CV [b] = 0 (1) ଋറ݅ (1) Λຬͨ͢ൣғͰɺCV [b] Λ࠷େԽ͢Δؔ b(x) ͕ ࠷దͳೖࡳՁ֨Ͱ͋Δɻ: b(x) ΛٻΊΑɻ 12 / 23
Ұճཱͪࢭ·ͬͯݕ౼͢Δ ଋറ݅ COST[b] − tCPA · CV [b] = ∫
dDx f (x)WR(b(x), x)CTR(x) [b(x) − tCPA · CVR(x)] = 0 ҎԼͷ b(x) ඃੵ͕ؔ 0 ʹͳΔͷͰଋറ݅Λຬͨ͢ b(x) = tCPA · CVR(x) (2) ࣜ (2) ͕ CV [b] Λ࠷େԽ͢Δͷ͔?ͦΕͱɺ࠷దͳೖࡳՁ֨ ผʹ͋Δͷ͔? ͜ͷʹ͜Ε͔Β͑·͢ʂ 13 / 23
४උ 1: ଋറ͖݅࠷େԽϥάϥϯδϡͷະఆ๏Ͱղ͘ ྫ 1 f (x, y) Λ࠷େԽ͢Δ (x,
y) Λ୳ͤ ∂f ∂x = 0 , ∂f ∂y = 0 ྫ 2 ଋറ݅ g(x, y) = 0 ͕͋Δͱ͖ʹ f (x, y) Λ࠷େԽ͢Δ (x, y) Λ୳ͤ ϥάϥϯδϡͷະఆ๏ (ϥάϥδΞϯ L Λఆٛ͠ɺ͋ͱ ಉ༷ʹඍΛ 0 ͱ͢ΕΑ͍) L(x, y; λ) ≡ f (x, y) + λg(x, y) ∂L ∂x = 0 , ∂L ∂y = 0 , ∂L ∂λ = 0 14 / 23
४උ 2: ൚ؔͱม ؔͱ൚ؔ ؔͱΛ༩͑ΔͱΛฦ͢ͷɻ ྫ: f (x) = x2
ͱ͢Δɻf (x) x ͷؔͰ͋Δɻ ൚ؔͱɺؔΛ༩͑ΔͱΛฦ͢ͷɻ ྫ: I[f ] = ∫ dx(f (x))2 ͱ͢ΔɻI[f ] f ͷ൚ؔͰ͋Δɻ CV [b], COST[b] b ͷ൚ؔͰ͋Δ มͱɺ൚ؔͷඍͷ͜ͱͰ͋Δ ྫ: f (x) = x2 Λ x Ͱඍ͢Δͱ? ∂f ∂x = 2x ྫ: I[f ] = ∫ dx(f (x))2 Λ f Ͱม͢Δͱ? δI δf (x) = 2f (x) (ඃੵؔ f 2 Λ f Ͱඍ͢Ε͍͍) 15 / 23
४උ͕Ͱ͖ͨͷͰɺ࠷దͳೖࡳՁ֨ΛٻΊ͍ͯ͜͏ ϥάϥδΞϯ: L b ͷ൚ؔɺ͔ͭɺλ ͷؔ L[b; λ] ≡
CV [b] + λ(SALES[b] − tCPA · CV [b]) ҎԼΛຬͨ͢ b(x) ͕࠷దͳೖࡳՁ֨Ͱ͋Δ δL δb(x) = 0, ∂L ∂λ = 0 16 / 23
४උ͕Ͱ͖ͨͷͰɺ࠷దͳೖࡳՁ֨ΛٻΊ͍ͯ͜͏ ϥάϥδΞϯ: L b ͷ൚ؔɺ͔ͭɺλ ͷؔ L[b; λ] ≡
CV [b] + λ(SALES[b] − tCPA · CV [b]) ҎԼΛຬͨ͢ b(x) ͕࠷దͳೖࡳՁ֨Ͱ͋Δ δL δb(x) = 0, ∂L ∂λ = 0 ༨ஊ ʮ࠷খ࡞༻ͷݪཧʯΛͬͯ b(x) ͷӡಈํఔࣜΛٻΊΔͱ͍ ͏ཧֶͷͱಉ༷Ͱ͢ 16 / 23
్தܭࢉ: ڵຯͷ͋Δਓ͚͍ͩͬͯͩ͘͞ ݟ͢͞ͷͨΊҎԼͷΑ͏ʹུه͢Δɻ WR′(b, x) = ∂WR ∂b (b, x)
มΛܭࢉ... δL δb(x) = f (x)WR′(b(x), x)CTR(x)CVR(x) + λf (x)CTR(x) × [ WR′(b(x), x)b(x) + WR(b(x), x) − tCPA WR′(b(x), x)CVR(x) ] = 0 17 / 23
͜Ε͕࠷దͳೖࡳՁ֨ͩ! 18 / 23
͜Ε͕࠷దͳೖࡳՁ֨ͩ! ࠷దͳೖࡳՁ֨ b(x) ͕ຬͨ͢ํఔࣜ ( b(x) + WR(b(x), x) WR′(b(x),
x) ) = (λ−1 − tCPA) · CVR(x) (3) ∫ dDx f (x)WR(b(x), x)CTR(x) [b(x) − tCPA · CVR(x)] = 0 (4) ࣜ (3) ʹΑͬͯ b(x) ͕ x ʹΑΒͳ͍ λ ʹґଘͨ͠ܗͰٻ·Δɻ ͜ΕΛࣜ (4) ʹೖ͢Δ͜ͱͰ λ ͕ܾఆ͞ΕΔɻ ͜ΕҎ্ͷղੳܭࢉ WR(b, x) ͷؔܗΛܾΊͳ͍ͱਐΊͳ͍ɻ 18 / 23
Winning-Rate WR(b, x) ʹ͍ͭͯ WR(b, x) ͷఆٛ (෮श) ೖࡳՁ֨ b
Ͱ auction ʹࢀՃͨ͠ͱ͖ʹɺimp ͕ൃੜ͢Δ֬ɻ • imp ൃੜ֬ࠂܝࡌҐஔ·ͰͷεΫϩʔϧྔͳͲʹґଘ ͢ΔͷͰɺαʔϏεʹΑͬͯେ͖͘ҧ͏ͣ • imp ൃੜ֬Ϣʔβʔͷੑ࣭ (x) ʹڧ͘ґଘ͢Δ • auction ʹࢀՃ͢ΔଞͷࠂͷྔͳͲʹґଘ͢Δ • b ґଘੑ score = CTR(x) · b ͷܗͰݱΕΔͣ ϩάੳͳͲ͔Β WR(b, x) Λܾఆ͢Δͷ͕ਅ໘ͳํ๏ͩΖ͏ɻ ͜͜ͰղੳܭࢉՄೳͳϞσϧؔΛͯΊͯΠϝʔδΛ͑ ͍ͨɻ 19 / 23
έʔε 1: b ͷ͖ؔ ࣍ͷܗΛԾఆͯ͠ΈΑ͏ WR(b, x) = G(x)(CTR(x)b)α G(x)
x ͷҙͷਖ਼ͷؔɺα ҙͷਖ਼ͷఆɻ ͜ͷ߹ɺࣜ (3),(4) ΑΓɺ࠷దͳ b(x) ࣜ (2) b(x) = tCPA · CVR(x) Ͱ͋Δ͜ͱ͕ࣔ͞ΕΔ (εΰΠ: G(x), α, f (x), CTR(x) ʹґଘ͠ͳ͍!) 20 / 23
έʔε 2: ্ݶ͋Γͷܗ έʔε 1 ͷɺWR ֬ͳͷʹେ͖ͳ b Ͱ 1
Λ͑ͯ͠ ·͏Ͱ͋Δɻ(b ͕େ͖͗͢Δ߹ഁ͢Δɻ) ͜ͷΛվળ ͢ΔͨΊ࣍ͷܗΛԾఆͯ͠ΈΑ͏ Ծఆ (b → ∞ ͕༗ݶͳྫ) WR(b, x) = G(x) CTR(x)b c + CTR(x)b G(x) x ͷҙͷਖ਼ͷؔɺc ҙͷਖ਼ͷఆɻ ࣜ (3) ͔ΒҎԼ͕ٻ·Δɻ(͜ΕΛࣜ (4) ʹೖ͢Δ͜ͱͰ λ ͕ఆ ·Δ) b(x) = c CTR(x) ( −1 + √ 1 + CTR(x) c (tCPA − λ−1) CVR(x) ) 21 / 23
έʔε 1,2 ͷൺֱ case2 ͰɺείΞ (= CTR · b) ΛͲΜͳʹ্͛ͯ
WR ʹ্ ݶ͕͋ΔͷͰɺCTR, CVR ͕ྑ͍߹ʹɺ૬ରతʹೖࡳՁ֨Λ্ ͛͗͢ͳ͍Α͏ʹ͠ɺͦͷ CTR, CVR ͕͍߹ʹߴΊʹೖ ࡳ͢Δͷ͕࠷దઓུʹͳΔɻ 22 / 23
·ͱΊ ࡾߦ·ͱΊ • ೖࡳՁ֨ͷ࠷దԽϥάϥϯδϡͷະఆ๏ͱม๏Λ ͬͯղ͚Δ • WR ΛΔ͜ͱ͕࣮ॏཁͩ • WR
ͷݟ͕͋·Γͳ͚Εɺb(x) = tCPA · CVR(x) ͱ͢ Δͷ͕࣍ળͷࡦͱͯ͠༗ޮͩ (έʔε 1) ͨͩ͠ຊͷ࠷ద ͳೖࡳՁ֨ͬͱෳࡶͳܗΛ͍ͯ͠Δ (ྫ:έʔε 2) Ԡ༻ྫ • ༧ࢉΛଋറ݅ͱ͢Δ߹ • ϑϦʔΫΤϯγʔ੍ԼͰͷϦʔν࠷େԽ 23 / 23